

Oban Flood Study Report 2C: Surface Water Management Plan

December 2019

Oban Flood Study Report 2C: Surface Water Management Plan

Client:	Argyll & Puto Council
Cheffi.	Argyil & bute council

Document number:	8649
Project number:	170506
Status:	Final
Author:	John Phillips & Douglas Swinbanks
Reviewer:	Iain Struthers
Date of issue:	13 December 2019
Filename:	170506_2C_Surface Water Management Plan.pdf

Glasgow	Aberdeen	Inverness	Edinburgh
Craighall Business Park 8 Eagle Street Glasgow G4 9XA	Banchory Business Centre Burn O'Bennie Road Banchory AB31 5ZU	Alder House Cradlehall Business Park Inverness IV2 5GH	1st Floor Sirius Building The Clocktower Estate South Gyle Crescent
0141 341 5040 info@envirocentre.co.uk www.envirocentre.co.uk	01330 826 596	01463 794 212	Edinburgh EH12 9LB 0131 370 4071

This report has been prepared by EnviroCentre Limited with all reasonable skill and care, within the terms of the Contract with Argyll & Bute Council ("the Client"). The report is confidential to the Client, and EnviroCentre Limited accepts no responsibility of whatever nature to third parties to whom this report may be made known.

EXECUTIVE SUMMARY

The Surface Water Management Plan (SWMP) for Oban is part of the overall Flood Risk Management Plan for Oban. The SWMP aims to identify and quantify flood risks from pluvial sources within the town. It will also identify potential solutions to reduce the risk from pluvial flooding.

To facilitate the assessment, the Oban surface water catchment was separated into 12 zones based on catchment characteristics. The surface flood probability in each zone was assessed by using data from a variety of sources, including an S16 hydraulic model of the sewer network, stakeholder and community consultation, GIS analysis of pluvial flow paths, and field visits to identify potential flow paths. The zones were also assessed on their vulnerability to flooding based on the *SEPA Flood Risk and Land Use Vulnerability Guidance*.

Three of the zones were identified as *Target Areas;* Lochavullin; Glenshellach; and, Soroba. Lochavullin has a history of significant flooding, which has regularly damaged buildings and businesses. Glenshellach has a large number of residential properties at risk of flooding. Glenshellach also has a history of flooding. Soroba was identified as the most vulnerable zone, the Scottish Water S16 model shows there is the potential for flooding from the network causing overland flow.

Twenty-eight solutions were considered, which aim to manage *everyday rain, more rain*, and/or *extreme rain*. They include property level interventions, local interventions, sub-catchment scale interventions, surface water network interventions, and watercourse engineering.

Multi-criteria compatibility analysis was used to score the appropriateness of each solution for resolving the primary flooding mechanism(s) in each zone, producing a ranking of solutions by zone. Detailed design is still required to develop the most appropriate individual or combination of solutions.

The discussion with stakeholders, including the community and Argyll & Bute Council, identified three priority target areas, while recognising that Scottish Water do not identify any properties in Oban as being at risk of internal flooding due to combined or foul sewer flooding for their required level of service (which is the 1 in 30 year event). The three target areas identified were Lochavullin, Soroba, and, Glenshellach. Works packages were developed for these areas. The works packages provide a variety of solutions, which in combination will reduce flood risk in these areas.

A works package was also for created for maintenance across the catchment which highlighted the need to make the best use of existing structures. Unblocking gullies, repairing pumps, and removing sediment were all highlighted as necessary maintenance tasks.

Detailed design of the solutions has not been progressed. Further assessment, design, and consultation is required to develop the solutions further and to integrate them with fluvial and coastal solutions. Consideration is also required for future climate change scenarios which will lead to more frequent and intense storms in the future.

The potential solution discussed within the SWMP can be included in future planning and development proposals. Much of the catchment would benefit from appropriate sustainable drainage systems (SuDS) which can be integrated easily into new developments (and are required for almost all new developments in Scotland) and provide additional benefits which can improve water quality or provide the community an amenity value beyond reducing flood risk.

OBAN FLOOD STUDY REPORT MAP

The context of the current report within the wider Oban Flood Study is highlighted in yellow as shown below.

Contents

Exec	utive	Summary	.i
Oba	n Floo	od Study Report Map	ii
1	Intro	pduction	1
	1.1	Terms of Reference	1
	1.2	Definition of Surface Water Flooding	1
	1.3	Principles of Surface Water Management	1
	1.4	Stakeholders	2
	1.5	Scope of Report	2
2	Data	a Collection	5
	2.1	Overview	5
	2.2	Drawings	5
	2.3	Desk Study	5
	2.4	Field Work	9
	2.5	SWMP Stakeholder Workshops1	0
3	Surf	ace Water Management Planning Zones1	2
	3.1	Overview and Derivation1	2
4	Floo	d Risk Findings1	4
	4.1	GIS Analysis1	4
	4.2	Sewer Network Model Predictions1	5
5	Vuln	erability And Flood Risk2	0
	5.1	Vulnerability2	0
	5.2	Flood Risk Overview2	1
	5.3	SWMP Zones2	3
	5.4	Interaction with the Black Lynn Watercourse2	5
	5.5	Lochavullin Pump Station2	6
	5.6	Interaction with Oban Bay2	7
	5.7	Target Areas2	7
6	Surf	ace Water Management Options2	8
	6.1	Surface Water Management Options Considered2	8
	6.2	Compatibility Screening	1
	6.3	Scoring	5
	6.4	Screening Results	7
7	Opti	ons4	0
	7.1	Target Area Options4	0
	7.2	Works Packages4	3
	7.3	Integration with Fluvial and Coastal Solutions4	4
8	Con	clusions4	5
Refe	erence	2S4	7

Appendices

- A Drawings
- B Solutions
- C Zone Compatibility Analysis
- D Solution Compatibility Analysis
- E Screening results
- F Worked Example
- G Works Packages

Figures

Figure 1.1: Oban Surface Water Catchment	3
Figure 1.2: Stages of surface water management planning; reproduced from Surface Water Management	
Planning Guidance	4
Figure 2.1: 1 in 5 year, 60 minute duration rainfall hyetograph	9
Figure 3.1: Surface Water Management Planning Zones	. 12
Figure 4.1 Location of properties in Oban where sewer flood depths are predicted (by Scottish Water	
modelling) to exceed 100 mm for a 1 in 200 year event (1 hour event duration)	18
Figure 5.1: Fluvial flood extent for 1 in 30 year event	. 26
Figure 6.1: Calculation of solution score for each zone	37

Tables

Table 2.1: List of drawings used and referenced in the report	5
Table 2.2: Data received from Argyll & Bute Council	5
Table 2.3: Summary of significant surface water flooding events	6
Table 2.4: InfoWorks inputs	7
Table 2.5: System type for nodes, links and sub-catchments	8
Table 2.6: Other assets in the sewer network	8
Table 2.7: Site visits	9
Table 3.1: Surface Water Management Planning Zones 1	3
Table 4.1: GIS analyses 1	4
Table 4.2: GIS Outputs	5
Table 4.3: Assessment of flooding predictions 1	6
Table 4.4: Number of receptors predicted to be flooded by sewer flooding for a 1 hr duration event (based on a	£
100 mm depth threshold). Values are based on current climate conditions, except where noted 1	7
Table 5.1: Land use vulnerability	0
Table 5.2: Flood receptor counts for each vulnerability class and SWMP zone 2	1
Table 5.3: Flood root cause descriptions 2	2
Table 5.4: Flood root cause by zone 2	2
Table 5.5: Summary of pluvial flood risk and vulnerable users for SWMP zones	3
Table 6.1: Management of different rainfall scales 3	0
Table 6.2: Compatibility scoring system 3	6
Table 6.3: Solution rankings according to zone	8
Table 6.4: Commentary on appropriate measures for management zones 3	9

1 INTRODUCTION

1.1 Terms of Reference

EnviroCentre Limited was commissioned by Argyll & Bute Council to undertake a surface water management plan (SWMP) and flood management study for the town of Oban. This technical report contributes to the surface water management plan requirement of the study.

1.2 Definition of Surface Water Flooding

Surface water flooding is a combination of *pluvial flooding* and *surface water sewer* flooding. Surface Water Management Planning Guidance (Scottish Advisory and Implementation Forum for Flooding, 2018) defines surface water flooding as the flooding which occurs when a rainfall event causes surface water to flow and pond on the ground and when sewers and artificial drainage systems exceed their capacity. It does not include flooding directly caused by fluvial or coastal flooding, although, due to complex interactions of many flooding sources, the root cause of the flooding is not always distinct.

Pluvial flooding is flooding arising from rainfall runoff ponding or flowing over the ground before entering a watercourse or drainage system, or when it cannot enter a drainage system due to the drainage system being already at full capacity.

Flooding from *surface water sewers* can occur due to inlet limitations (i.e. when the rate of water arriving at entry points such as road gullies exceeds the throughput of these inlets, especially due to debris blockage or inadequate gully density), network conveyance limitations (i.e. when the size and gradient of network pipes is inadequate to drain received water under gravity or assisted by pumps) or due to discharge limitations (inadequate pumping for pumped sewers, or high water levels in receiving watercourses or systems for gravitational sewers).

1.3 Principles of Surface Water Management

Managing surface water cannot be done in isolation and decisions regarding surface water inevitably impacts other stakeholders and the community. The Surface Water Management Planning Guidance (2018) presents the principals of sustainable surface water management to guide decision making and to maximise benefit as:

- 1) Manage rainfall and surface water in a way that protects and enhances both the built and natural environments.
- 2) Manage rainfall and surface water safely above ground.
- 3) Avoid increasing the amount (volume or peak rate) of surface water in sewers, and where possible reduce the amount of surface water in sewers.
- 4) Manage everyday rainfall at source, and heavy and extreme rainfall by collecting, delaying and conveying excess flows safely to watercourses following natural topography.
- 5) Where possible, multifunctional solutions should be considered which maximise all benefits; these include benefits for people, water quality and biodiversity.
- 6) Help the urban environment adapt to climate change and mitigate the loss of green space.
- 7) Coordinate with other stakeholders to maximise benefits.

1.4 Stakeholders

Managing flooding is complex and requires the active input and co-operation of a range of stakeholders to be effective. The stakeholders involved in managing flood risk include:

- Local Authorities (in exercising their powers to manage flood risk);
- Local Authorities (as roads authorities);
- Local Authorities (as planning authorities);
- Local Authorities (in applying building standards);
- Scottish Water (in compliance with their duties under the Sewerage (Scotland) Act 1968);
- SEPA (in exercising their various responsibilities to oversee flood risk management); and,
- Individual homeowners and landowners (responsible for managing rainfall and surface water on the land they own).

1.5 Scope of Report

This report is a surface water management plan (SWMP) for the town of Oban within Argyll and Bute. This report is part of the Oban Study which addresses all sources of flood risk, including coastal flood risk and fluvial flood risk.

The extent of the study area for this surface water management plan is considered to be the local catchment area draining through Oban as shown in Figure 1.1. The aim of a SWMP is to reduce the risk of surface water flooding in the most sustainable way, as required under the Flood Risk Management (Scotland) Act 2009.

Argyll & Bute Council Oban Flood Study; Report 2C: Surface Water Management Plan

Figure 1.1: Oban Surface Water Catchment

The Surface Water Planning Guidance (Scottish Advisory and Implementation Forum for Flooding, 2018) details the approach that should be taken to developing SWMP. It sets out the principles of Surface Water Management Planning, which includes:

- Range of sustainable actions; the plan will include a range of different actions. The actions should be the most sustainable combination of actions required to manage flood risk.
- Long-term iterative approach; the SWMP should have a long term vision and should be monitored, reviewed and updated.
- Risk based; investment should be directed toward areas at greatest risk of surface water flooding.

The guidance identifies the stages of the surface water management planning process which includes developing the plan; implementing and monitoring the plan; and, reviewing and updating the plan, presented in Figure 1.2. This report will focus on the "Develop Plan" stage of Surface Water Management Planning. In particular, it will contribute to understanding the flood risk and option appraisal.

Source: Scottish Advisory and Implementation Forum for Flooding, 2018

Figure 1.2: Stages of surface water management planning; reproduced from Surface Water Management Planning Guidance

2 DATA COLLECTION

2.1 Overview

Several different sources of information were consulted in order to gain the most comprehensive understanding of the risk of surface water flooding in Oban. These included:

- Desk study and investigation, including GIS analysis and a comprehensive review of Scottish Water's S16 modelling (including their InfoWorks ICM model of the combined sewer catchment);
- Review of SEPA flood maps;
- Field work such as site visits, details of which are provided separately;
- Public consultation events held in Oban; and
- Stakeholder engagement sessions.

2.2 Drawings

Table 2.1 presents a list of the drawings used and referenced within this report. The drawings are presented in Appendix A.

Table 2.1: List of drawings used and referenced in the report	Table 2.1:	List of d	rawings use	d and ref	erenced in	the report
---	------------	-----------	-------------	-----------	------------	------------

Drawing	Title
Number	
170506-036	S16 Model Details and Predicted Flood Depths from S16 Model
170506-037	Overland Flow Paths and Predicted Flood Depths from S16
170506-102	Predicted Flood Depths from the S16 Model for the 1 in 30 year Flood
170506-103	Predicted Flood Depths from the S16 Model for the 1 in 200 year Flood
170506-104	Predicted Flood Depths from the S16 Model for the 1 in 200 year plus Climate Change
	Flood

2.3 Desk Study

Argyll & Bute Council provided a significant amount of information on the geography of the catchment and the recent flooding history (Table 2.2).

Table 2.2: Data received from Argyll & Bute Council

Туре	Description
Photos	Site visits, flood events in 2001, 2014 & 2018
Flood Reports	Biennial Flood reports from 2003, 2005, 2007 & 2009
Model	Scottish Water InfoWorks model with outputs and report
Shapefiles	Buildings locations and sizes
Mapping	Ordnance Survey Mapping for the study area, and SEPA's Flood Risk Mapping
Reported flood	Communication from the community and stakeholders who affected by flooding during historic events
Drainage Layout	Record Drawing of the drainage arrangement for Dalintart, and drainage arrangement plans for Lochavullin, including the Pumping Station

2.3.1 Historical Events

Historical flooding is one of the drivers for the project. A desk study was conducted to identify the location of historical flooding and possible causes of the flooding. This was supplemented with information provided by Argyll & Bute Council regarding previous flooding, including witness communication, photographs and news reports. Table 2.3 presents a summary of recent significant surface water flooding events in the study area. A comprehensive list of flooding from all sources is provided in the main Oban Flood Study report.

Table 2 2. Summar	of significant	surface water	flooding events
Table 2.3. Summar	/ OF Significant :	surface water	nooung events

Date	Flooding	Description	
	Туре		
30/10/2001 & 01/11/2001	Type Fluvial and Surface Water	The wastewater network around Lochavullin was surcharged and caused some flooding in the supermarket carpark. Link to Photo Link to Photo	
28/10/2014	Fluvial and Surface Water	Lochavullin carpark was inundated to depths greater than a metre, destroying many cars. The car park was inundated due to the Black Lynn overtopping its banks. <u>Link to YouTube Video</u>	
09/10/2018 - 11/10/2018	Fluvial and Surface Water	The Black Lynn inundated the carpark affecting many parked cars and local businesses. A residential property to the east of the river, upstream of Lynn Road, has been inundated multiple times, most notably in this event. <u>Link to the Oban Times Article</u> <u>Link to the Daily Record Article</u> <u>Link to BBC Article</u> Link to the Northern Echo Article	

2.3.2 GIS Analysis

Geographical Information System (GIS) analysis of the Oban area was performed using the computer application ArcGIS. The outputs of the analysis were used to understand the catchment characteristics, locate areas of high vulnerability, and to identify areas at risk of flooding.

2.3.3 Hydraulic Model

Flood risk associated with the sewer network was assessed using the latest available network model provided by Scottish Water (*network STW000559:NEEDS:EXISTING:APRIL2015*, created in InfoWorks ICM 7.0). The original network model was built in 2004. According to the report supplied by Scottish Water, the confidence in the original model version was low to medium-low. The report states that the reason for the low confidence is the lack of supporting data to allow any audit trail to be followed. Model maintenance and revision was performed in 2014 and 2015 by Mouchel and in 2016 by ARC, noting that the model used for this study does not include 2016 revisions. Due to the maintenance, the model confidence has improved to acceptable. It is therefore considered suitable for use here in predicting sewer network flooding behavior.

Table 2.4 presents model inputs used in simulations considered in this report.

-	
Software	InfoWorks ICM Viewer
Version	7.0
Model Network	STW000559:NEEDS:EXISTING:APRIL2015
Scenario	Base
Waste Water Profile	CIRIA_1DWF Waste water profile -1hr + wk/end update
Ground Infiltration	RES01
Trade waste Profile	Trade Waste with Commercial profile 15 v2
Tide Level	Oban Sea and River Levels Design

Table 2.4: InfoWorks inputs

The sewer network model has multiple discharges to the coast (Oban Bay) and to watercourses. All of the discharges are modelled as freely discharging, effectively assuming that coastal and watercourse water levels remain at or below the downstream invert level of all discharge pipes for the duration of all modelled events. It should be noted that this assumption is optimistic in terms of sewer flood risk; where water levels are above discharge pipe invert levels for some or all of the modelled extreme event, the risk of sewer flooding will be greater than predicted due to impaired discharge relative to model assumptions. Noting that the invert levels of some discharge pipes are below even baseflow water levels (e.g. NM85299705, which discharges to the Black Lynn in Lochavullin and has a downstream invert level of 2.07 m above Ordnance Datum (AOD) compared to baseflow water levels in the adjacent reach of the river of around 2.45 mAOD), it can be concluded that the sewer network model is likely to under-predict sewer flood risk.

Scottish Water provided a model build and verification report, STW000559_S3_MBV (Scottish Water, 2017). The accuracy of the model verification was not commented on as the verification audit had not been completed.

Drawing 170506-036 presents details from the hydraulic model.

2.3.4 Hydraulic Model Setup

The Scottish Water S16 model was assessed as suitable to use to identify flooding sources within the catchment. The model simulation parameters were compared to the InfoWorks ICM's default parameters, with the model using a lower (0.025 instead of the default 0.05) baseflow factor, which is a model stability parameter for low-flow conditions; this is not expected to impact model predictions of peak flow or flooding.

Table 2.5 presents total counts of model elements for each system type (either stormwater sewer, foul sewer or combined sewer containing stormwater and foul water). This summary indicates that the majority of the

modelled sewer network is combined, but there are a significant number of surface water outfalls. Other assets identified in the Scottish Water network are shown in Table 2.6.

Model run data for the 1 in 5 year return period events have been provided by Scottish Water. Due to license agreements, model predictions for higher return period events were not made available for analysis as part of this study. The rainfall hyetograph of the 1 in 5-year return period, 60-minute duration event is shown in Figure 2.1.

Model	Combined	Foul	Storm
Manhole	1,474	504	629
Outfall	5	2	61
Storage	2	0	1
Total Nodes	1,481	506	691
Links	1,420	488	625
Total Link Length (m)	33,084	14,565	20,226
Sub-catchments	542	433	339
Total Subcatchment Area (ha)	139.1	96.7	100.9

Table 2.5: System type for nodes, links and sub-catchments

Table 2.6: Other assets in the sewer network

Structure	Count
Flap Valve	12
Orifice	48
Pump	19
Screen	5
Sluice	4
Weir	131

Figure 2.1: 1 in 5 year, 60 minute duration rainfall hyetograph

2.4 Field Work

A number of ground truthing site visits have been undertaken (Table 2.7). For each site visit a Site Visit Report was produced containing information including observations, future areas of investigation and early potential solutions. During these visits the following objectives were considered:

- Assessment of topography local to the forecast flooding;
- Ground truthing flow paths identified in the ICM model and LIDAR GIS analysis;
- Identification of any potential disruption to these flow paths;
- Superficial assessment of current condition of sewer inlets;
- Identification of opportunities for mitigation;
- Identification of constraints; and
- Inspection, where practical, of drainage system outfalls to the natural water environment.

Date	Zones Visited
15/01/2019	Lochavullin, Glenshellach and Glencruitten/Mossfield
25/01/2019	Soroba
21/02/2019 - 22/02/2019	Longsdale North, Longsdale South, Town Centre North and Corran

Tabl	e 2.7	: Site	visits
------	-------	--------	--------

2.5 SWMP Stakeholder Workshops

2.5.1 Workshop 1

Members of Scottish Water and Argyll & Bute Council were invited to EnviroCentre Ltd's Glasgow office on the 21st February 2019 to participate in a Surface Water Management workshop and discuss various elements of the study, including;

- Informing Scottish Water about the works to date and the progression of the Surface Water Management Plan;
- Following an extensive review, discussion of the S16 model provided by Scottish Water in October 2018. This included flagging gaps in information, general assumptions and overall confidence in the model;
- The development of the 12 Surface Water Management Zones for the town of Oban, and how they were derived;
- The pluvial pressures that have been identified for each area following various site walkovers, public consultation;
- Any potential solutions that could be implemented, and Scottish Water's opinion on each;
- Any future works that Scottish Water are planning to do in the town of Oban, and if there is potential for any collaboration with regards to flooding solutions;
- If existing Scottish Water assets can be used to divert surface water from the "hot spots" and into the coastal waters to the north;
- Overall responsibility for any potential overland and underground solutions; and
- The next steps in progressing the SWMP.

It was confirmed at the workshop that Scottish Water do not identify any properties in Oban as being at risk of internal flooding due to sewer flooding for their required level of service (which is the 1 in 30 year event).

2.5.2 Workshop 2

Members of Scottish Water and Argyll & Bute Council were invited to participate in the second Surface Water Management workshop. The workshop took place in EnviroCentre Ltd's Glasgow office on the 11th April 2019. The workshop provided an opportunity to discuss:

- The methodology of the zone and solution compatibility analysis. Examples of the long lists for each zone.
- Potential opportunities and solutions were presented for different areas in the catchment, which facilitated a discussion about their viability and whether there were practical limitations to the implementation. Surface Water Options for the following SWMP zones were considered:
 - o Dunollie;
 - o Corran;
 - o Glencruitten;
 - o Glenshellach;
 - o Soroba;
 - Soroba Lower;
 - o Town Centre (North);
 - o Lochavullin.
- The next steps in progressing the SWMP.

Ensuring that Scottish Water are engaged throughout the development of the Surface Water Management Plan is vital to the overall feasibility of the study and can also provide additional benefits including identifying any

solutions that can reduce the volume of peak rate of surface water entering sewers or which reduce the frequency and volume of spill of foul-containing drainage from combined sewer overflows (CSOs).

3 SURFACE WATER MANAGEMENT PLANNING ZONES

3.1 Overview and Derivation

The review of available baseline information along with field visits enabled 12 different Surface Water Management Planning (SWMP) Zones to be derived for the Oban surface water catchment, and these are shown in Figure 3.1 and Table 3.1.

Figure 3.1: Surface Water Management Planning Zones

Table 3.1: Surface Water Management Planning Zones

SWMP Zones
Dunollie
Longsdale - North
Corran
Town Centre - North
Longsdale - South
Town Centre - South
Soroba Road (Lower)
Glencruitten / Mossfield
Gallanach/Pulpit Hill
Lochavullin
Glenshellach
Soroba

These 12 zones were defined based on the following criteria:

- Where the greatest impacts of surface water flooding occur, based on both the S16 ICM modelling, and information gathered during the desk study and public consultation events;
- The sewer catchment boundaries and urban boundaries (e.g. major roads and railway lines);
- Contributing surface water catchments; and,
- "Priority zones".

Areas out with the 12 zones may have localised pluvial flooding but have not been considered further.

4 FLOOD RISK FINDINGS

This chapter highlights the key findings from the sources of information identified in Section 2 of this report.

4.1 GIS Analysis

Extensive analysis was conducted using ArcGIS using the methodology and data as outlined in Section 2.3.2 and detailed in Table 4.1. A list of the GIS output drawings is provided in Table 4.2, with all drawings contained in Appendix F. This allowed the categorisation of anticipated flooding from the Scottish Water pipe network. Much of this analysis was subsequently ground-truthed during extensive walk-over surveys of the 12 SWM Zones, (see Section 3.1).

Туре	Description	
Overland Flow Analysis	1m Lidar data imported and processed to derive a map of overland flow routes of surface water based upon topography only (but not considering local obstructions/deflections (walls etc.)).	
Ground Slope	Lidar data was used to derive ground slope.	
Flood Area Delineation	Output polygons showing flooding from Scottish Water S16 model output for a range of return periods, storm durations and inundation depths were overlain on Ordnance Survey mapping to enable the development of an understanding of the areal extent of Scottish Water network flooding. Additional mapping of the extent of the flooding around Lochavullin, reported by Argyll and Bute Council on Tuesday 09 October 2019 was added to the S16 modelled flood extents, for comparison. The flooding was likely a combination of fluvial and pluvial flooding. The observed flood extent was a similar extent as the 1 in 100 year 180min pluvial flood extent. Both had significant flooding within the car park in Lochavullin, and flooding in the Lidl car park.	
Asset Vulnerability	Polygons delineating assets (such as buildings, roads etc.), with appended usage was	
Analysis	processed to indicate their vulnerability class. Additional analysis isolated assets liable to be impacted by Scottish Water network flooding from S16 model.	
Surface Water	SWM Zones were derived using GIS:	
Management Zone (SWM Zone) Definition	 Consideration was given to the flood extent polygons for 1 in 200 year return period flooding up to and above 0.1m flood depth. Approximately 50 areas of interest were identified. The 50 areas of interest were merged to create 12 SWM Zones based upon: Scottish Water drainage network catchments; Topographical aspects (consideration of watercourses and embankments as 'natural' boundaries; Overland flow path connectivity; and Neighbourhood identity. Where the above points raised contradictions, best judgement was used to develop zones of manageable area. 	
S16 model analysis	 S16 model data was imported from an ICM model export. This data was interrogated to show the following Pipe diameters, invert level Pipe slope; low gradients, high gradients; Pipe sedimentation; Outfall locations 	

Table 4.1: GIS analyses

Drawing Number	Title(s)	Description/Findings
170506-036	Scottish Water S16 ICM model data and Scottish Water GIS Asset Data	Overview of Scottish Water pipe and manhole network with information extracted from the Scottish Water S16 InfoWorks ICM model. It includes surcharged lengths and pipes with sediment. Surface water flooding for 1 in 200 year and 1 in 30 year events are also included.
170506-037	Overland flow paths	Overland flow paths are created using a GIS analysis.

Table 4.2: GIS Outputs

4.2 Sewer Network Model Predictions

Predicted flooding extents from Scottish Water's sewer network model for the 1 in 30 year return period event, 1 in 200 year return period event, and 1 in 200 year return period plus climate change event, are presented in drawings 170506-102, 170506-103, and 170506-104, respectively.

The sewer network model was used to identify potential sewer flood risk mechanisms and locations. Some local factors were found to exacerbate local flood risk, but overall flood risk is primarily associated with two factors:

- 1. Surcharge in the trunk sewer and;
- 2. The combined network is required to carry high volumes of surface water relatively long distances.

The trunk sewer is surcharged due to several reasons:

- 1. The low pass forward flow of the Corran pumping station. According to the notes within the model, the maximum flow the Wastewater Treatment Works (WwTW) can receive is 160l/s. It is not clear if that is dictated by the pump capacity or the receiving capacity.
- 2. There is an orifice limiting flow to the Corran Pumping Station (PS). The modelled pump arrangement is quite complex, and results in the top water level (TWL) upstream of the orifice being greater than downstream. This suggests that there is flooding in the upstream network before the storage tank, which has a capacity of approximately 3,800m³, is full, which is not an optimal arrangement and may indicate that the model setup is incorrect.
- 3. The trunk sewer has an extremely shallow gradient. This is due to the low topographic gradient and it is unlikely to be resolved without significant cost and disruption, so it is not necessarily a recommended solution. The low gradient, and hence low velocities, in the trunk sewer also causes sediment accumulation. The TWL in much of the network directly connected to the trunk sewer is dictated by the level in the trunk sewer, with predicted peak water levels being very similar across much of the network.
- 4. The majority of flow in the trunk sewer discharges to the WwTW but CSOs can provide relief by discharging some flow to the watercourse or Oban Bay. Scottish Water have confirmed there is a CSO and an emergency outfall which have not been included in the model. As these outfalls have not been modelled the model may be overpredicting surcharge in the trunk sewer.

There are also multiple minor issues in the modelled network which increase the risk of surcharge or flooding. These include, but are not limited to:

- The Lochavullin pumping station is not included in the model. This means flooding in Lochavullin may be overpredicted.
- Low gradient pipes can cause low velocity. This can limit the flow through the pipe. The upstream network has a greater flow than the maximum flow through the pipe.
- High gradient pipes can cause the flow to have a greater velocity. The flow also has high energy. This can cause a hydraulic jump as the network transitions from high gradient to low gradient, which can cause surcharge.
- Sediment deposits reducing the cross-section of the pipe limiting the flow; the sediment depth in the modelled network is either assumed or based on survey data.
- Pipe size reduction, the downstream pipe size is smaller than the pipe immediately upstream.

Note: The model can report two different types of surcharge: surcharge by flow and surcharge by depth. Surcharge by depth means the top water level is greater than the soffit of the pipe, whereas surcharged by flow means that the pipe full capacity of the pipe has been exceeded. When discussing surcharge in the following section *surcharge* refers to surcharge by flow unless otherwise stated.

4.2.1 Zone-Specific Predictions

Table 4.3 presents an assessment of clear over- or under- prediction of flooding for the 12 zones. This does not assess the models ability to replicate observed flooding, but assesses any clear discrepancies with reality which may cause over- or under-prediction of flooding.

SWMP Zones	Assessment of Flooding
Dunollie	Acceptable
Longsdale - North	The combined network drains to Corran PS and is surcharged due to the backing up caused by the limited flow at the PS. This may mean there is a slight over prediction in flooding.
Corran	The model may be overpredicting surcharge in the trunk sewer. As discussed the trunk sewer is surcharged partly because an orifice is limiting flow to the storage tank and pump at Corran pumping station, which is causing flooding before the storage is fully utilised. This seems unrealistic, and further investigation may be required. This overprediction may also be causing overpredictions in other areas which drain to the trunk sewer.
Town Centre - North	Surcharge caused by Corran PS may be over predicting flooding in this zone.
Longsdale - South	Acceptable
Town Centre - South	Surcharge caused by Corran PS may be over predicting flooding in this zone.
Soroba Road (Lower)	Surcharge caused by Corran PS may be over predicting flooding in this zone.
Glencruitten / Mossfield	Acceptable
Gallanach/Pulpit Hill	Acceptable
Lochavullin	The Lochavullin pumping station is also not included which may be causing an over prediction in this area. There might also be an under prediction because the network has a free discharge to the Black Lynn but in reality, during extreme events the outfall may be drowned.
Glenshellach	The surface water network drain via a free discharge to the watercourse, so the model may be slightly underestimating the flooding. Also the foul network has sediment which has been assumed, which may be causing an over prediction of flooding.

Table 4.3: Assessment of flooding predictions

SWMP Zones	Assessment of Flooding
Soroba	The surface water network drain via a free discharge to the watercourse, so the
	model may be slightly underestimating the flooding.

4.2.2 Property Flood Predictions

As the Scottish Water network model covers all of the Oban catchment, flood estimates based on sewer flooding can reasonably be used as a proxy for overall surface water flooding. Predicted flooding extents from the Scottish Water network model have been provided for a range of return periods in response to both a 1 hour and 3 hour storm event, with filtering applied to identify areas flooded above a 1 mm, 100 mm and 300 mm peak depth. Accounting for building upstand, flooding of less than 100 mm is unlikely to cause internal damage to properties. Based on network model predictions, property flood risk is slightly greater for a 1 hour storm event compared to a 3 hour event. For the 1 hour event, peak flood depths exceeding 100 mm are predicted to impact 10 properties in response to the 1 in 30 year event increasing to 22 properties for the 1 in 200 year event (Table 4.4; Figure 4.1). However, flooding may or may not actually inundate these properties depending upon their actual upstand, noting that Scottish Water do not identify any properties in Oban as being at risk of internal flooding due to sewer flooding for their required level of service (which is the 1 in 30 year event).

Return Period	Residential	Non-Residential	Total Receptor
(1 in x yrs)	Receptor Count	Receptor Count	Count
1	0	0	0
2	0	0	0
5	1	0	1
10	2	2	4
10 (+50% climate change)	8	5	13
30	6	4	10
30 (+50% climate change)	18	9	27
50	8	5	13
100	11	7	18
200	13	9	22
200 (+50% climate change)	25	15	40

Table 4.4: Number of receptors predicted to be flooded by sewer flooding for a 1 hr duration event (based on
a 100 mm depth threshold). Values are based on current climate conditions, except where noted.

Figure 4.1 Location of properties in Oban where sewer flood depths are predicted (by Scottish Water modelling) to exceed 100 mm for a 1 in 200 year event (1 hour event duration).

A high-level economic appraisal of sewer flood damages is provided in *Report 3B: Options Appraisal (Economic Appraisal)*. It indicates that sewer flooding is a minor contributor to overall estimated flood damages in Oban for current climate conditions. However, sewer flooding may become a more significant source of overall flood risk without continuous investment in maintaining and upgrading the sewer network, and/or investment in other surface water management measures, with the number of properties at risk predicted to approximately triple at low return periods and double at moderate to high return periods due to climate change (Table 4.4). Also note that three specific limitations of network modelling may also impact upon the accuracy of flood predictions:

- 1. Modelling assumes free discharge at all river and coastal outfalls; it therefore does not account for elevated sewer flood risk which would result if high sewer flows occur at the same time as high water levels in the river and/or high tides.
- 2. Modelling does not account for mitigation to the above risk in the Lochavullin area provided by existing surface water pumps.
- 3. Modelling also does not account for at least one CSO and emergency outfall, which may or may not provide relief to sewer flood risk (depending upon water levels in the receiving water body).

Predictions of sewer flood risk may therefore be different if any or all of these limitations are addressed in an updated sewer model, and/or if integrated modelling is performed by dynamically linking the sewer model to a river and coastal model. However, addressing these limitations in existing model predictions of surface water flood risk is beyond the scope of the current study. Instead, the focus of this SWMP is to identify options capable of reducing surface water flood risk in isolation, especially as it may increase due to climate change, and to qualitatively assess the likely impact of predictive limitations and multi-source flood interaction upon option performance, noting:

- Candidate surface water management options which aim to reduce or attenuate inflows into the sewer network, or temporarily store excess water, will provide flood reduction benefits regardless of water level conditions at outfalls into rivers or coastal waters.
- Candidate surface water management options which aim to overcome local "bottlenecks" in the sewer network and increase the peak rate of flows passed forward in the sewer network may exacerbate flood risk in the lower sewer network during high water conditions in river/coastal waters.
- Candidate surface water management options which rely on increasing discharge to rivers or coastal waters may be ineffective during high water conditions in river/coastal waters.

Given that the contribution of sewer flooding to overall flood damages is estimated to be relatively minor, it is recommended that short-term investment is focussed on fluvial-tidal and coastal flood management, as detailed in *Report 3B*: *Economic Appraisal*. In this context, surface water management options are assessed in this report with a view to phased implementation in the medium- to long-term, rather than as part of a formal flood scheme or immediate investment.

5 VULNERABILITY AND FLOOD RISK

5.1 Vulnerability

5.1.1 Stakeholder and Community Consultation

Consultations with the community and with Argyll & Bute Council identified multiple areas requiring intervention to manage surface water flooding issues.

Lochavullin has been highlighted by Argyll & Bute Council, local business and the community as a priority area at high flood risk. The area has experienced flooding from multiple events which have been reported in the local press. It is a very flat, low lying area, such that it is difficult to drain, with drainage problems being exacerbated by high water levels in the adjacent Black Lynn river, which is tidally-impacted. As a consequence, Lochavullin is at risk from all of surface water flooding, fluvial flooding and tidal flooding. The hydraulic model broadly agrees with stakeholder and community feedback in this area.

Glenshellach was also highlighted by Argyll & Bute Council as an area that requires surface water management. There has been flooding in the gardens of some of the properties around Lon Mor. In addition, there is pluvial flooding in some of the roads around Glenshellach.

Feed back from the community notes that general maintenance is an issue within the catchment, with reports of blocked gullies and broken pipes.

Argyll & Bute Council maintain a list of gullies and screens which are regularly checked in at-risk areas. Adaptive management of this maintenance regime will be required going forward.

During the October 2018 event the pump located within Lochavullin failed. The flood history database for the local area also seems to be incomplete, indicating either that flooding issues are not being reported when they occur, or else that reports are being inadequately managed and processed.

5.1.2 SEPA Flood Risk and Land Use

The overall vulnerability of each SWMP zone was assessed based on the *SEPA Flood Risk and Land Use Vulnerability Guidance*. Buildings within the 1 in 200 year return period flood extent obtained from the S16 model were assessed for their vulnerability based on Table 5.1. Table 5.2 shows the total flood receptor count in each SWMP zone for each vulnerability classification. Water compatible uses have not been counted.

Soroba has been identified as having the highest vulnerability. There are three most vulnerable users within Soroba and 65 highly vulnerable users.

Vulnerability	Land Use
SEPA 1: Most Vulnerable Uses	Examples include emergency services; medical services; residential
	institutions; basement dwellings; isolated dwellings; basement
	dwellings; caravans and mobile homes used for permanent residence;
	and, installations with hazardous substance consent.
SEPA 2: Highly Vulnerable Uses	Examples include dwellings; hotels; student residence; and, landfill
	sites.

Table 5.1: Land use vulnerability

SEPA 3: Least Vulnerable Uses	Examples include shops; services; restaurants and takeaways; offices;
	bars; industry; leisure; agricultural; waste treatment.
SEPA 4: Essential Infrastructure	Includes essential transport infrastructure, essential utility
	infrastructure such as power stations, water and wastewater
	treatment, wind turbines and other energy.
SEPA 5: Water Compatible Uses	Examples include flood controls; sewage transmissions; docks and
	marinas; water-based recreation; and, nature conservation.

Table 5.2. Flood recei	ntor counts for	each vulnerability	class and SWMP zone
Table 5.2. Flood level	ptor counts for	each vullerability	Class and Swivir Lune

Zone	SEPA 1: Most	SEPA 2: Highly	SEPA 3: Least	SEPA 4: Essential
	Vulnerable Uses	Vulnerable Uses	Vulnerable Uses	Infrastructure
Dunollie	1	53	2	1
Longsdale - North	0	67	3	1
Corran	0	70	9	1
Town Centre - North	0	58	39	1
Longsdale - South	0	30	0	0
Town Centre - South	0	26	22	1
Soroba Road (Lower)	2	31	23	2
Glencruitten/ Mossfield	0	60	2	0
Gallanach/Pulpit Hill	0	33	11	1
Lochavullin	0	6	59	0
Glenshellach	1	34	9	1
Soroba	3	65	3	1
Total	7	533	182	3

5.2 Flood Risk Overview

The potential "root causes" of surface water flooding are described in Table 5.3. Each SWMP zone was assessed using the model results, stakeholder responses, information from site walkovers and historical information to determine to what degree each of these root causes is likely to contribute to surface water flood risk in the area; the outcomes of this assessment are presented in Table 5.4, adopting the following screening scale:

- 3 Major cause of flooding in the area. An individual root cause could flood properties.
- 2 Has a significant contribution to flooding in the area. Unlikely to flood properties on its own but may exacerbate flooding of major causes.
- 1 Has no effect or a minor impact.

Note that a scoring of 0 would be inappropriate for this analysis, since managing major causes of flooding will usually result in another cause becoming (comparatively) more significant in relation to residual flooding. Particularly for sewer networks, managing flooding is therefore usually an ongoing process of progressively identifying and resolving the "current bottleneck", before moving on to the "next bottleneck".

Root Cause	Description
Rainfall Ponding on the	There is evidence that surface water ponds on the surface and cannot drain
Ground	away from the site. This may be due to inadequate drainage, as well as
	inadequate infiltration.
Flow Accumulating and	There is evidence that overland flow occurs during or following large
Flowing Overland	rainfall events and substantial overland flow has been observed. This may
	be due to lack of drainage, as well as inadequate infiltration.
Network is Undersized	The network is surcharged if the network does not have sufficient capacity
Causing Surcharge	to convey the surface water. This means the maximum flow possible
	through the pipe is less than the incoming flow. This can be managed by
	reducing the inflow to the network or increasing the capacity of the local
	drainage network through flow diversions or upsizing the network.
Downstream Drainage	There is evidence that the downstream network is surcharged by depth.
Network is Surcharged	This means that the pipe full capacity of a pipe is greater than the incoming
	flow but a downstream restriction which is limiting flow causing backup in
	the local network. This can be caused due to blockages, pumping stations
	which are undersized, or small pipes in the downstream network for
	example.
	This root cause is identified primarily using the S16 model, supported with
	information gathered during the desk study, site walkovers and the public
	consultation events.
Outlet Drowned by the	If water levels in the receiving water (river or coastal) are higher than the
Receiving Water	invert level of surface water sewer outfalls, then these discharges won't be
	free draining. If there is inadequate hydraulic gradient to drive discharge
	against high water levels in the receiving water, water levels in the sewer
	will build up over time and may cause flooding to occur, even when sewer
	flowrates are below pipe capacities.
	This root cause is identified primarily using the fluvial model, supported
	with information gathered during the desk study, site walkovers and the
	public consultation events.

Table 5.3: Flood root cause descriptions

Table 5.4: Flood root cause by zone

SWMP Zone	Rainfall ponding on the surface	Flow accumulating and flowing overland	Network is Undersized Causing Surcharge	Downstream Drainage Network is Surcharged	Outlet Drowned by the Receiving Water
Dunollie	2	3	2	2	1
Longsdale - North	2	3	3		1
Corran	1	3	3		1
Town Centre - North	2	2	3		1
Longsdale - South	2	3	1	1	1
Town Centre - South	1	2	1		1
Soroba Road (Lower)	1	3	1		1
Glencruitten / Mossfield	3	3	3	1	1
Gallanach / Pulpit Hill	3	3	1	1	2
Lochavullin	2	1	3	1	3
Glenshellach	2	3	3	1	1
Soroba	2	3	3	1	1

5.3 SWMP Zones

The vulnerable users and potential fluvial flood risk for each SWMP zone is summarised in Table 5.5.

Zone	Vulnerable Users	Flood Risk Description
Dunollie	 1 Most Vulnerable receptor (school) 53 Highly Vulnerable receptors (mostly residential properties) The A85 passes through the zone 	This zone includes a length of trunk sewer which drains to the Corran PS, which has a low gradient and is surcharged. The zone is steep, and overland flow is possible towards the bay along Corran Brae. There are two other high risk areas in the north of the zone which are surcharged.
Longsdale - North	 67 Highly Vulnerable receptors (mostly residential property) The A85 passes through the zone 	There are two stretches of conduits connected to the 600mm pipe leaving this zone, which are surcharged and therefore pose a flood risk. There are two flooding manholes in this area which may require further investigation. The zone is steep, and overland flow is possible.
Corran	 70 Highly Vulnerable receptors (mostly residential property) The A85 passes through the zone 	There are multiple flooding manholes in this zone. This zone drains via a trunk sewer to the Corran PS. There are several linked conduits which are surcharged by flow and flooding manholes and pose a flood risk. The zone is steep, and overland flow towards the bay is possible.
Town Centre - North	 58 Highly Vulnerable receptors (mostly residential property) 39 Least Vulnerable receptors The A85 passes through the zone 	The zone drains to the Corran PS via the trunk sewer. The trunk sewer is surcharged by both flow and by depth. In addition to the risk from the trunk sewer there is also surcharged and flooding nodes in the local smaller network.
Longsdale - South	 30 Highly Vulnerable receptors (mostly residential property) 	There are some surcharged links within the zone. There are no flooding nodes. This zone is not at high flood risk from the network.
Town Centre – South	 26 Highly Vulnerable (mostly residential properties) The A85 and A816 both pass through the zone. 	The zone drains to the Corran PS via the trunk sewer which is surcharged. There are some surcharged links but no flooding nodes. Evidence of previous flooding observed during walkover.

Table 5.5: Summary of pluvial flood risk and vulnerable users for SWMP zones

Zone	Vulnerable Users	Flood Risk Description
Soroba Road	• 2 Most Vulnerable	The zone drains to the Corran PS via the trunk sewer which is
(Lower)	 receptor (an ambulance station and a residential home) 31 Highly Vulnerable receptors The A816 passes through the zone 	surcharged. There are also two surcharged lengths with flooding nodes.
Glencruitten / Mossfield	 60 Highly Vulnerable receptors (mostly residential property) 	This zone includes several areas of open space including playing fields at Mossfield Park and Oban Rugby club, which could provide relief to these surcharged assets. The zone includes several drainage assets (around the MS research centre north west of Mossfield Park and around the sub-station; these are not included in the S16 model and may require further investigation). Evidence of surface water flooding within the car park at the MS research centre and Glencruitten Court was evident during the ground truthing site visit. A lot of the zone has surcharged links. In particular the area around Mossfield Drive has multiple flooding manholes. This zone is at a high risk of flooding and the network is not providing sufficient drainage.
Gallanach	 33 Highly Vulnerable receptors (mostly residential property) 	There are two clusters of flooding manhole, one is located at the outfall to the sea, the other is in the east of the zone. This zone may need further investigation as it contains some complex nump and asset arrangements.
Lochavullin	 6 Highly Vulnerable receptors (mostly residential property) 	There are several outfalls that discharge surface water to the Black Lynn as it routes northwards and anecdotal evidence gathered during the public consultation events suggest that the majority of these outfalls are submerged during extreme tidal events. During the ground truthing site visit it was observed that some of the surface water drainage assets (including gullies and strip drains) are in poor condition and require maintenance. The network in this zone is complex. There are more flooding nodes in Lochavullin than any other zone. Multiple conduits are surcharged, however the Council operated pump station in this area is not included within the model, which when operational will drain lower lying areas. As a result, the modelled flood extents are expected to over-predict the effects of pluvial flooding in this area. There are known issues regarding the resilience of the Council pump station, which has contributed to recent flood events. The operation of the present drainage network is not considered to be providing adequate protection for this zone in the present form.

Zone	Vulnerable Users	Flood Risk Description
Glenshellach	 1 Most Vulnerable receptor (a residential home) 34 Highly Vulnerable receptors The A816 passes through the zone 	A number of responses received during the public consultation events have indicated that the surface water issues experienced in this area are due to the recent residential development at Catalina in the North West of the Glenshellach area, and the increase of impervious areas. There are some areas of green space that could be utilised for SuDS retrofitting, including the areas around McKelvie Road. The contribution of overland flows from the undeveloped higher ground surrounding this area flowing down onto the recent developments is a factor in the surface water issues observed in this area. The east of the zone has a number of connected links that are surcharged, and multiple flooding manholes, this poses a high risk to the community and to the hospital located adjacent to this area.
Soroba	 3 Most Vulnerable receptors (a school, children's home and a fire station) 65 Highly Vulnerable receptors (mostly residential property) 	During the ground truthing site visit it was identified that some existing gullies around Jura Road and Shuna Terrace, and Soroba Road itself (as it passes Soroba Park Terrace) were in need of maintenance. As Soroba Road (A816) continues north passed the railway track, it falls at a steeper gradient and acts as a flow path for any overland flow routing from Dummore Road. The existing drainage network does not have the required inlet density and capacity to effectively deal with this runoff. To the south of the Fire Station there is an existing depression (approx. location 185822, 728618) which could potentially be utilised for storage. There are multiple links between the surface and foul networks. The foul network is surcharged in the east of the zone, due to the high amount of interaction between the two systems any change could exacerbate the issue. The SW network is complex, surcharged, and several nodes are flooding. The network is not sufficient to drain this area. Soroba has the highest vulnerability of any of the SWMP zones.

5.4 Interaction with the Black Lynn Watercourse

As noted, there are sewer outfalls discharging to the Black Lynn in the vicinity of Lochavullin. These outfalls are fitted with flap valves, to prevent backflow during high river water level conditions and therefore prevent the sewers from becoming a pathway for fluvial flooding. Sewer providers aim to protect against internal property flooding for events up to the 1 in 30 year return period event; for this return period (and for the critical storm event in relation to fluvial flood risk), river water levels are predicted to reach 3.9 mAOD in the Lochavullin area, causing flooding beyond both banks of the Black Lynn (Figure 5.1). High river levels will result in backup or "locking" of sewer outfalls, where there is insufficient hydraulic gradient to allow these outlets to drain into the river. In the event of bank overtopping, river floodwater will also enter sewer gullies and displace sewer storage capacity, with both effects resulting in higher sewer flood risk than predicted by Scottish Water modelling. Surface water management options which attenuate flows "upstream" of this area will provide some benefit to reducing interacting fluvial-pluvial flood risk in the Lochavullin area, whereas options relying on increasing sewer conveyance or discharge to the river may be ineffective or may further exacerbate combined fluvial-pluvial flood risk in Lochavullin.

Figure 5.1: Fluvial flood extent for 1 in 30 year event

5.5 Lochavullin Pump Station

There is a pumping station located in the Lochavullin car park (Drawing No. 98047M/7), which operates as an integral part of the surface water drainage system and was installed to provide drainage when water levels in the adjacent Black Lynn Burn were too high to allow gravity drainage. The Lochavullin pump station (Drawing No. 98047M/4) has three connected sumps. The three pumps discharge through a 300mm diameter rising main, which discharges into the Black Lynn watercourse. The sumps have a storage capacity of approximately 28m³. Each pump has an effective maximum capacity of 620m³/hr, accounting for headloss, although they share a rising main so it is unlikely that the combined discharge is as high as 1,860m³/hr.

The pumping station was constructed in 2001. Recently, there has been issues with the operation of the pumping station which exacerbated flooding within Lochavullin. Flash flooding in October 2018 affected the control cabinet of the pumping station, which compromised the pump automatic operation. The pump control resilience has since been improved to avoid this failure, and further pump improvements and operational safeguards are proposed by Argyll & Bute Council in the short term.

The pumping station will be effective at reducing surface water flood risk to the Lochavullin area, provided the Black Lynn is not also overtopping its banks, at which point pumping floodwaters to the river becomes ineffective. Beyond this, the pumping station may also be effective at evacuating flood waters following pluvialfluvial flooding, to minimise the persistence of flooding and resulting flooding consequences.

5.6 Interaction with Oban Bay

The 1 in 200 year tidal level is 3.87mAOD and the 1 in 30 year tidal level is 3.48mAOD. The Corran Esplanade is above the 1 in 30 year tidal level, although five manholes on the esplanade have cover levels below the 1 in 200 year tidal level.

The Black Lynn is a transitional water body, and is affected by both high fluvial and high tidal levels. Lochavullin has 22 manholes with cover levels below the 1 in 30 year tidal level and 48 manholes with cover levels below the 1 in 200 year tidal level. As is the case with the interaction with fluvial flooding (see Section 5.4), sewer network discharge in the Lochavullin area will be reduced during extremely high tides, thereby increasing the risk of surface water flooding, exacerbated by tidal flooding whenever tidal level exceed river bank levels.

5.7 Target Areas

To support the phased approach the following target areas were identified. Discussion with stakeholders and the community and the SEPA vulnerability analysis have highlighted three key areas in Oban which surface water management planning should focus on.

Target Area 1: Lochavullin

This area was identified by the community and stakeholders as a high risk and vulnerable area. This is evidenced by previous flood events in the area. There are multiple businesses located here which would benefit from surface water management and flood risk management more generally.

Target Area 2: Soroba

From the vulnerability analysis presented in Section 5.1, Soroba is the most vulnerable area. There are three properties with a Most Vulnerable land use classification in this zone, and a large number of residential properties which are predicted to be at risk of flooding according to the sewer network model.

Target Area 3: Glenshellach

From the vulnerability analysis presented in Section 5.1, Glenshellach is one of the most vulnerable areas. This area is highly ranked in the SEPA Flood Risk Assessment. There are a large number of residential properties at risk of flooding in this zone. In addition, Argyll & Bute Council have identified this as a priority location for surface water management intervention due to historical flooding in the area.

6 SURFACE WATER MANAGEMENT OPTIONS

A range of structural and non-structural solutions will be considered to mitigate the surface water risk within the catchment. A long list of structural solution options will be created using multiple sources including SWMP Guidance and engineering judgement. This long list can be shared with stakeholders for further assessment to identify the most appropriate range of options for each SWMP zone.

Solutions will, where possible, be integrated with green infrastructure and use blue-green corridors. Where appropriate, multifunctional uses will be considered which will contribute to the amenity value of the community and provide multiple positive benefits in addition to reducing flood risk.

6.1 Surface Water Management Options Considered

6.1.1 Scale of Structural Solutions

The solutions have been grouped together according to the scale of the intervention. The groups are:

- A. Property level intervention;
- B. Local intervention;
- C. Sub-catchment scale intervention;
- D. Surface water network intervention; and,
- E. Watercourse engineering.

A. Property Level Interventions

Property level interventions are small scale solutions which are usually designed to intercept flows at the property level. Two property level interventions have been considered: rainwater harvesting and green roofs. Both solutions intercept flows as they runoff from the roof and can have a positive impact on localised flooding. Their impact is very limited, especially for higher return period events, and they need to be installed on buildings across a wide area to have a significant impact on the wider catchment. Green roofs are typically difficult to retrofit onto existing buildings, due to their additional structural loading (especially when wet), but also due to a large proportion of roofs in Oban (and the UK generally) being pitches rather than flat; green roof implementation may therefore have more potential as part of future redevelopment.

B. Local Interventions

Local interventions are small scale interventions which can have a positive impact on the local network. Local interventions can retain and store flow, reduce flow velocity, convey flow, provide flow with an opportunity to drain away, or a combination of the above.

The primary objective of these interventions is to relieve flooding in the local area, but they have the potential to provide secondary flooding benefits on the downstream network. By retaining or draining flow locally, the interventions avoid passing the flow forward and therefore reduce flood risk downstream.

In order to have a catchment wide impact, a range of local interventions should be considered, and they should be implemented over a wide area.

C. Sub-Catchment Intervention

Sub-catchment scale interventions are interventions which have a major impact across the catchment. Subcatchment scale interventions are generally designed to store a large volume of water during a flood event. They have the potential, depending on the option selected, to provide a great deal of amenity value and even biodiversity benefits.

One of the major benefits of sub-catchment scale interventions is that they can be successful even when located away from locations of flooding.

To have a catchment wide impact, depending on the hydraulics and catchment specific details, only one subcatchment scale intervention may be required. Although such options may have a larger up-front cost than diffuse solutions, they are generally less complicated to implement and cheaper to maintain, especially where these can be fully sited within publicly-own land.

D. Surface Water Network Intervention

Surface water network interventions aim to relieve surface water flooding by reducing the top water level in the surface water network.

The surface water network can also transport flooding from one area to another. Most sewer networks consist of multiple branches converging to one or a small number of trunk sewers; the resultant convergence of flow means that sewer flooding may happen in the lower reaches of the network but be caused by the contribution of flows from parts of the sewer catchment that do not themselves flood. Sewer flooding in a given location therefore cannot necessarily be resolved by local "above ground" interventions at that location, as the cause of this flooding may be regional in scale.

It is generally not feasible to implement wholesale improvements to an existing sewer network, due to the prohibitive cost and disruption of modifying pipes and manholes buried under roads, footpaths and public amenities. Instead, network-based solutions tend to be targeted at bottleneck locations, where either additional storage or conveyance, or sewer diversion, is predicted to reduce flooding at a location of interest without worsening flooding elsewhere in the network.

For surface water network interventions, the key stakeholder is Scottish Water. While Local Authorities can collaborate with Scottish Water in investigating and partially funding this type of intervention, Scottish Water are the responsible authority for implementation, monitoring and maintenance of network solution options.

E. Watercourse Engineering

There are a wide range of potential watercourse engineering solutions including, but not limited to, restoring the upstream floodplain, restoring urban watercourses, de-culverting, providing online or offline storage and construction of a flood diversion channel. By reducing river water levels, these options are capable of reducing surface water flooding caused by backup at outfall locations. However, as their primary intention and impact is to reduce fluvial flood risk, these options are assessed within the main Oban Flood Study report.

6.1.2 Rainfall Event Management

Different solutions also impact different scales of event. The rainfall events considered for option appraisal are provided in Table 6.1. For a surface water management plan to be successful, all of these will need to be managed and each will require different interventions.

December 2	019
------------	-----

Rainfall	Description	Management
Everyday Rain	Small rainfall events potentially occur multiple times per month. Everyday rainfall does not cause significant runoff.	Generally managed at source. Infiltration and evapotranspiration can be utilised to manage risks from this scale of rainfall event.
More Rain	Rainfall events occur multiple times a year. The rainfall causes runoff, and overland flow.	Generally managed by delaying, collecting and safely conveying overland flow to drainage networks and watercourses.
Extreme Rain	Greater than a 1 in 1 year return period. There is a significant overland flow. There is significant risk of flooding because of extreme rain.	Generally managed by delaying, storing and safely conveying overland flow to drainage networks and watercourses. Volumes are significantly greater than "more rain", so the scale of the intervention may be required to convey larger flows or store larger volumes.

Table 6.1: Management of different rainfall scales

6.1.3 Catchment Surface Water Management Strategies

Catchment surface water management strategies are catchment wide strategies that aim to reduce surface water risk by taking a holistic approach to management. They are typically long-term strategies that are part of future decision-making processes.

The strategies can include solutions described in Section 6.1.1 as part of the wider strategy.

In order to make these strategies work, multiple stakeholders need to be involved in particular SEPA, Scottish Water, Argyll & Bute Council, as well as smaller stakeholders involved in influencing future development.

There are three major strategies:

Run-off Reduction Strategy

A long-term strategy to convert impermeable grey surface to green permeable spaces. Green infrastructure allows more rain to infiltrate and encourages evapotranspiration. This strategy is effective for everyday and more rain rainfall events, but its impact is limited for significant rainfall events. Some of these solutions which may be implemented as part of this solution includes green roofs; tree pits; and, rain gardens.

Reducing surface water in the sewer

A long-term strategy to reduce the volume of flows in the surface water network. This can be achieved by run-off reduction as described above. This is particularly important when approving new developments. New developments will need to confirm that they are not increasing flows in the network by integrating SuDS into their designs before getting approval for the development.

Another option to reducing surface water in the sewer network is sewer separation. This is a long term strategy to replace combined sewers with separate foul and surface water sewers. Surface water sewers can be discharged to watercourses or the coast without the same pollution concerns as CSOs, which are strictly limited through licence in terms of discharge frequency and rate, although consideration will still need to be given to the Water Environment Controlled Activities Regulation, and a CAR licence may be required. Sewer separation reduces the volume of water that needs to be conveyed to the WwTW for treatment. It is, however, a disruptive and expensive solution, as large parts of the road network would be affected to construct the separate sewers.
Scottish Water is responsible for the sewer network and is therefore a key stakeholder in reducing surface water in the network.

Land Management

Land management strategies are long-term. They aim to reduce or attenuate runoff by altering either the land use type and/or improving the management of a given category of land use in order to reduce runoff rate and volumes. Re-naturalisation/restoration of riparian agricultural land into functioning floodplains can improve attenuation of flows within watercourses. Alterations to soil management, landscaping and land drainage features can reduce the rate and volume of runoff from agricultural land into watercourses.

Successful land management requires careful engagement of landowners, to ensure proposed changes are implemented and maintained.

6.2 Compatibility Screening

The objective of the compatibility screening is to remove any obviously unviable options from the long-list of options. The screening is completed by assessing the requirements and limitations of each zone and the capabilities and limitation of each solution.

As this is a first stage screening, some important parameters are not assessed as they would require site specific information or other detailed information to make a reasonable assessment. One important omission that should be noted is that the solutions were not assessed in terms of hydraulic feasibility. This will be a key parameter in the final design and some of the solutions still considered at this stage may not be hydraulically feasible in practice.

6.2.1 Stages of Screening

Stage 1: Long List to Shortlist for Each Zone

Stage 1 is to reduce the long list of options into a more manageable list that resolves one of the main causes of flooding in each SWMP zone, as presented in Table 5.5. Any solution which does not resolve one or more of the root flooding causes of a given zone will be discounted for that zone. This stage is not scored but divides the long list into options which potentially resolve the root cause and should be considered further and those options which do not and therefore should be discounted from further consideration for that zone.

Stage 2: Zone and Solution Compatibility

Stage 2 is to assess the list from Stage 1 against the zone characteristics. Each zone is assessed on varying characteristics which may inform which solutions is appropriate, and each solution is assessed on how it will respond to those characteristics. This is to assess how practically viable each solution is in each zone. This is a scored assessment and will contribute to the final score of each solution in each zone.

Stage 3: Solution Specific Viability

Stage 3 is a solution specific score. Through discussions with the stakeholders, certain characteristics of the solutions have been highlighted as important considerations in making the solution viable. These broad categories will be assessed to identify solutions which are likely to have a significant impact on flooding. This is a scored assessment and will contribute to the final score of each solution in each zone.

The final assessment of recommended solutions for each zone will be based on these stages. The long list will be reduced to a shortlist and a score for each of these solutions will be presented based on the Zone and Solution Compatibility and Solution Specific Viability.

6.2.2 Zone Compatibility

Stage 1: Zone Flood Type

The flooding root cause in each catchment was identified and described in Section 5.2.

Stage 2: Zone Descriptors

Catchment Gradient

The catchment is classified based on its overall gradient. Classification was based on GIS analysis, along with engineering judgement examining potential flooding flow paths within the zone.

- A The zone generally has a very steep gradient
- B The zone generally has a steep gradient.
- C The zone generally has a low gradient.

Green Space

Areas which are undeveloped and unpaved, including natural areas as well as managed parks and grassed areas, are considered to be green spaces. These offer the best opportunity for placement of above-ground surface water management features, for capturing, storing, draining and/or conveying water. Some forms of green infrastructure (such as rain gardens, ponds and wetlands) may also provide other benefits (including aesthetic, amenity and recreation, water quality treatment) in addition to surface water management.

- A No green space is available.
- B Some green space is available.
- C A significant area of green space is available.

Utilised Space

Developed non-road and non-building areas, including car parks, play parks and sporting fields, may have some potential for repurposing as part of above-ground surface water management measures, and may also be suitable for siting of below-ground water management measures, such as geocellular storage and tank storage.

- A No utilised space is available.
- B Some utilised space may be available.
- C A significant area of utilised space may be available.

Density of Buildings

The density of buildings within an area can be used as a measure of the available space for implementing smallscale interventions and general flexibility to retrofitting surface water management measures either above- or below-ground. Constructing ponds or wetlands too close to existing buildings may damage foundations, so high building density is likely to be prohibitive to large water storage solutions, or high infiltration solutions.

- A Dense buildings.
- B Medium density buildings.
- C Sparse buildings.

Density of Transport Infrastructure

The implementation of surface water management measures in the vicinity of public roads may require traffic management, and may otherwise cause traffic disruption, with this being an important consideration for arterial roads. Each zone was therefore assessed in terms of the presence of major transport lines.

- A Minimal services.
- B One of the major roads pass through the zone.
- C A dense area and one of the major roads pass through the zone.

6.2.3 Solution Compatibility

Stage 1: Flood Type

This corresponds to the flooding root cause in each zone identified in Section 5.2.

Reduces Ponding

Directly linked with Rainfall Ponding on the Surface

A major everyday flooding source is overland ponding. This is caused by rainfall accumulating on the surface and being unable to drain away. If a solution intercepts the flow before it can pond or if it allows flow to drain away it will reduce ponding.

Reduces Overland Flow

Directly linked with Flow Accumulating and Flowing Overland

Uncontrolled overland flow has the potential to intrude into properties and make roads impassable. If the solution reduces the volume of runoff, provides a safe conveyance for the flow, or provides a way of draining excess flow it will reduce the risks associated with overland. Managing overland flow includes safely conveying it away to drainage network or to a watercourse or reducing the velocity of the flow.

Increases Local Network Capacity

Directly linked with Network is Undersized Causing Surcharge

The local network is surcharged by flow, meaning that the surface water network does not have enough capacity to deal with the surface water. This can be managed by reducing the inflow to the network or increasing the capacity of the local drainage network, noting that the latter may increase flood risk further downstream in the network.

Reduces Downstream Network Surcharge

Directly linked with Downstream Drainage network is Surcharged

If there is no downstream capacity in the surface water drainage network the surface water network will back up and may then flood. Solutions which either increase downstream flow capacity, create an additional onward flow path, or else that store water that backs up to prevent it from flooding will reduce flooding by this mechanism.

Reduces Level of the Receiving Water

Directly linked with Outlet Drowned by the Receiving Water

If water levels in the receiving water body are very high at the point(s) where surface water networks discharge, the rate of discharge may be significantly reduced, and cause backup flooding. Solutions which reduce water levels in receiving water bodies will reduce flood risk due to this mechanism.

Stage 2: Catchment Requirements

Required Gradient

Directly linked with Catchment Gradient.

The functionality and feasibility of a given solution can be significantly impacted by gradient. Flat or gentlysloping ground is ideal for placement of large structures, such as wetlands and other storage solutions, while avoiding excessive earthworks and finished slopes, and also ensures that velocities are manageable for conveyance features. Conversely, steep ground is generally unsuitable for the placement of large structures and may also create erosion problems for green conveyance measures such as swales.

- A Can be constructed on any gradient, low to very steep.
- B Can be constructed on most gradients except very steep.
- C Can only be constructed on low gradients.

Required Land Take

Directly linked with Green Space.

The solution has been assessed on land take requirement. This is based on one installation, so a solution which would require multiple installations may still be considered as having a low land take requirement.

- A The solution has low land take requirement.
- B The solution has a medium land take requirement.
- C The solution has a high land take requirement.

Conflict with Existing Uses

Directly linked with Utilised Space.

Some solutions can be constructed on sites that are already being utilised for another use. Underground solutions can be installed and the existing use restored. Also, some solutions can be retrofitted without changing the current usage of the site.

- A Can be constructed on utilised land; existing infrastructure can be maintained or restored.
- B Can be constructed on utilised land, following consultation from the land owners, but would require a change to land use.
- C Implementation would be incompatible with existing features and infrastructure.

Proximity to Building Foundations

Directly linked with Density of Buildings

Solutions which rely on deep storage or infiltration can risk damage to buildings foundations. These solutions would not generally be appropriate in zones with a high building density.

- A The solution can be located close to or on a building.
- B The solution must consider adjacent buildings but is not expected to pose a high risk.
- C The solution would put adjacent buildings at risk and must be located at a safe distance.

Disruption to Transport Infrastructure

Directly linked with Density of Transport Infrastructure

The implementation of some solutions, especially during the construction phase but also possibly during their operation, has the potential of causing significant disruption. Potential disruption includes traffic disruption and services disruption. An extremely disruptive solution may be prohibitive if it is in an area with vital transport links or services.

- A Not disruptive, only minor impacts to transport.
- B Some disruption possible.
- C Extremely disruptive, potentially affecting services for a significant length of time.

Stage 3: Solution Specific Viability

During stakeholder meetings, three factors were highlighted as being key to identifying the most suitable surface water management measures:

- produces a high magnitude of flooding reduction impact;
- has a low complexity of implementation, particular in relation to the need to engage with Scottish Water and work within their requirements; and,
- provides multiple benefits.

Each solution is scored in relation to these three factors, as follows:

Magnitude of Impact

The solution is scored on its magnitude of impacts. A solution which has a major impact on reducing flooding from extreme events will score 2. A solution which contributes to resolving flooding for an extreme event or resolves flooding for a more rain event will score 1. A solution which does not have a major impact or only assists in resolving everyday rain will score 0.

Challenges Relating to Implementation

This score will give a qualitative indication of how difficult it may be to get community and stakeholder backing to the intervention, without which it may be more difficult or impossible to progress a given option.

A score of 2 is given if the solution does not have major foreseeable challenges and the community is likely to back the proposal. A score of 1 indicates that the proposed solution will likely have some challenges, but it should be possible to resolve these through community engagement or working with stakeholders. A score of 0 is given if there are major challenges, for example solutions that may increase inflows to the sewer network (and therefore be objected to by Scottish Water) or would otherwise impact upon third party owned assets.

Multifunctional Uses

Solutions that provide multiple benefits and provide amenity value to the community will score 2. A solution that has limited benefits outside of resolving flooding will score 1. Solutions that provide no additional benefits, for example buried solutions, score 0.

6.3 Scoring

For each zone every solution is assessed and is scored based on its compatibility to the one characteristics and its viability in terms of impact, implementation challenges and additional benefits.

Table 6.2 presents the scoring system against which each solution is scored. The calculation is shown in Figure 6.1 and is out of a possible 11, with higher scores being better. Appendix F presents a worked example for Glenshellach. The worked example shows the steps from long list to shortlist and how a score was applied to each solution.

Stage 1: Long List to Shortlist for Each Zone

Elegating Poot Cauco	Solution Compatibility						
Flooding Root Cause	Compatible	Not Compatible					
Rainfall ponding on the surface	Provides a contribution to resolving this.	Does not impact this flooding root cause.					
Flow accumulating and flowing overland	Provides a contribution to resolving this.	Does not impact this flooding root cause.					
Network is Undersized Causing Surcharge	Provides a contribution to resolving this.	Does not impact this flooding root cause.					
Downstream Drainage Network is Surcharged	Provides a contribution to resolving this.	Does not impact this flooding root cause.					
Outlet Drowned by the Receiving Water	Provides a contribution to resolving this.	Does not impact this flooding root cause.					

Stage 2: Zone and Solution Compatibility

Compatibility	Compatible	Not Compatible		
Score	1	0		
Gradient	A solution requiring a gradient which is compatible with the typical catchment gradient	A solution which is not compatible, i.e. the gradient is too steep for the solution to be viable		
Green Space / Land Take	A solution which would have space to be constructed on a green space	A solution which is not compatible, i.e. the solution requires space that is not available		
Utilised Space / Land Use Conflicts	A solution which would have space to be constructed on utilised land	A solution which is not compatible, i.e. the solution requires space that is not available		
Density of / Proximity to Buildings	A solution which would not pose a risk to existing buildings (either due to adequate space around building, or because the solution type doesn't pose a risk)	A solution which is not compatible, i.e. the solution cannot be constructed near existing buildings but the zone is very dense.		
Density/Disruption of Transport Infrastructure	A solution which would not conflict with existing services and cause disruption.	A solution is not compatible, i.e. the zone provides important transport links that may be disrupted.		

Stage 3: Solution Specific Viability

Score	0	1	2
Magnitude of Impact	Has a small or negligible impact on an extreme event.	Has a significant impact or is part of a wider solution to resolve flooding during a major event	Has a major impact on resolving flooding during an extreme event.
Challenges Relating to Implementation	Very challenging to implement	Implementation challenges that will be overcome	Few foreseeable implementation challenges
Multifunctional Uses	No additional amenity value	Medium additional amenity value, one or two additional benefits	High additional amenity value, multiple other uses or benefits

Compatibility Score	= (Gradient Score	•	Green Space Score	·	Utilised Space Score	·	Density of Buildings Score	•	Density of Important Services Score	•	Magnitude of Impact Score	٠	Challe Relati Impleme Sco	enges ing to entation pre	٠	Multifunctie Uses Scor	onal re
Compatibility Score	=	1	+	1	,	1		+ 1		+ 1		+ 2		٠	2		٠	2

Figure 6.1: Calculation of solution score for each zone

6.4 Screening Results

The results of the compatibility screening are presented in Table 6.3. The options which provide a solution to flooding root cause have been ranked from 1 to 3, to provide some focus on which options might be most suitable. Appendix E shows the scoring results for each solution in each zone.

Table 6.3: Solution rankings according to zone

	Glenshellach (Target Area)	Soroba (Target Area)	Gallanach	Lochavullin (Target Area)	Glencruitten / Mossfield	Soroba Road (Lower)	Town Centre - South	Dunollie	Longsdale - North	Longsdale - South	Corran	Town Centre - North
A.1 Rainwater Harvesting			2		3							
A.2 Green Roofs			2		3							
B.3 Rain Garden			1		2							
B.4 Bioretention Systems			1		2							
B.5 Proprietary Cellular Tree Pits			1		2							
B.6 Evapotranspiration			1		2							
B.7 Overland Conveyance	1	2	2		3	2		2	2	2	2	
B.8 Grass Filter Strip			3		3							
B.9 Filter Drains	2	3	3		3	3		3	3	3	3	
B.10 Additional Sewer Inlets	3	2	2	3	3	2		2	2	2	2	2
B.11 Enhanced Gully Pots	3	1	2	2	3	1		2	2	2	1	2
B.12 Permeable paving			3		3							
B.13 Enhanced Underground Void Space	2	2		3	3				2		3	2
B.14 Infiltration Basin			3		3							
B.15 Swale	1	1	1	3	2	2		1	1	1	1	2
C.17 Wetland	1	1		1	1				1		1	2
C.18 Pond	1	1		1	1				1		1	2
C.19 Attenuation Basin	2	2		2	2				2		1	2
C.20 Extended Detention Basin	1	1		1	1				1		1	1
D.22 Pipe Resizing	2	1		3	2				2		2	2
D.23 Upstream Attenuation Tank	3	2		3	3	2	1		3		3	3
D.24 In-line Attenuation Tanks	3	2		3	3	2	1		3		3	3
D.25 Drainage Network Offline Storage	2	1		3	2	2	1		2		2	2
D.26 Sewer Separation	2	1		3	2	2	1		2		2	2
D.27 New Outfall to Watercourse	1	1		3	2				1		2	2
D.28 WWTW Upgrade						2	1		2		2	2
E.29 Re-engineering Existing Watercourses				2								

Zone	Commentary on Appropriate Outcomes
Town Centre - South	Due to the lack of space in this zone, SuDS are not a likely option. Therefore,
	improving the drainage network may be the best option.
Dunollie	Intercepting overland flow and improving the density and capacity of sewer
	inlets may be a priority for this zone. In addition, due to network surcharge,
	upgrading of the network may help alleviate some of the surface water issues.
Longsdale - North	Overland flow needs to be improved in this zone. The recommendations for this
	zone include improving the density and capacity of sewer inlets and utilising
	capacity in the network. Safely conveying flow overland should also be
	considered.
Longsdale - South	Safely conveying flow overland should be considered and option for this zone.
Corran	Overland flow needs to be improved in this zone. There is no capacity in the
	drainage network, therefore safely conveying flow overland should also be
	considered. Improving the drainage network could also be an option.
Town Centre - North	There is very little space in this zone, so many of the SuDS types are unlikely to
	be viable. Improving the drainage network may be the best option to improve
	flooding in this zone.
Glenshellach	Due to the flooding root cause in this zone the solutions that should be
	considered focus on local or property level interventions such as rainwater
	harvesting. For extreme events, additional outfalls to the watercourses could be
	considered.
Soroba	Due to the flooding root cause in this zone, rainfall ponding on the surface, the
	solutions that should be considered focus on local or property level
	interventions such as evapotranspiration or rain gardens. A swale may be an
	appropriate intervention, but the gradient may be too steep for this to be
	acceptable. There were no appropriate locations to install storage which could
	deal with extreme rain in this zone. A wider catchment approach may be
	required to identify a site for extreme rain interventions.
Gallanach	Property or local interventions may be considered appropriate for this zone.
	This would include rain gardens and swales.
Lochavullin	In terms of structural solutions, additional sewer inlets (to improve the inflow
	capacity of the sewer network) and storage devices along with swales have been
	highlighted as possible solutions. General maintenance and local upgrades to
	the drainage network may also be considered. Lochavullin is also affected by
	fluvial flooding, which will have a greater potential impact during larger events.
	Provision of non-return valves is included within the design options
	recommended in the main Oban Flood Study report. The forward strategy for
	targeting and sizing on-going upgrades will be informed by the updated Scottish
	Water model when it includes the Council pump station.
Glencruitten / Mossfield	Smaller property or local interventions are the most viable options for this zone.
	intercepting the source raintail and inflitrating flow would manage much of the
Conche Deed (Laward)	everyday risk.
Suroba Koad (Lower)	density and consists and overland flow routes would be considered the
	density and capacity and overland flow routes would be considered the
	preferred option.

7 OPTIONS

7.1 Target Area Options

There were three target areas which were further investigation to develop baseline solutions as discussed in Section 5.7. The shortlist for each solution is presented in a table with the score out of 11, as discussed in Section 6.3. Further investigation was carried out to identify potential location for the solutions in the relevant zone. A comment is made as to whether or not there is an opportunity that could be pursued. The scores were used to develop works packages presented in Appendix G.

7.1.1 Target Area 1: Glenshellach

	Score	Opportunity	Opportunity Exists
Extended Detention Basin	9	There are opportunities within the zone to install an extended detention basin.	Yes
Overland Conveyance	8	Due to the lack of opportunities to store flow on the slopes of the zone, overland conveyance can be used to safely convey flows to the watercourse or storage elsewhere in the zone.	Yes
Swale	8	Due to the lack of opportunities to store flow on the slopes of the zone a swale may be used to convey flow to watercourses or storage elsewhere in the zone. Swales are particularly beneficial because they will remove pollutants.	Yes
Wetland	8	There may be an opportunity within greenspace near the watercourse for placing a wetland, although the impact of this upon river flooding behaviour needs to be determined to ensure this option doesn't cause fluvial flood risk detriment.	Yes
Pond	8	There may be an opportunity within greenspace near the watercourse for placing a pond, although the impact of this upon river flooding behaviour needs to be determined to ensure this option doesn't cause fluvial flood risk detriment.	Yes
New Outfall to Watercourse	8	The surcharge in the network is located near to the watercourse so additional outfalls may reduce this surcharge.	Yes
Filter Drains	7	Filter drains will help infiltrate flow, reducing flows to the sewer system and to watercourses. They are effective at reducing flood risk for smaller events, but provide limited benefit for extreme events.	Yes
Enhanced Underground Void Space	7	Due to the vicinity to the watercourse and the lack of large areas of utilised space such as car parks, this is not considered a viable option.	No
Attenuation Basin	7	There may be an opportunity within greenspace near the watercourse for placing an attenuation basin, although the impact of this upon river flooding behaviour needs to be determined to ensure this option doesn't cause fluvial flood risk detriment.	Yes
Pipe Resizing	7	Improving flow to the watercourse may be required to reduce surcharge. There may be some areas where pipe resizing is the only option although generally above-ground conveyance is preferred.	Yes
Drainage Network Offline Storage	7	Offline storage is very expensive. It is preferred to discharge flow to the watercourse rather than storing but this may be reconsidered based on the fluvial model investigation.	No
Sewer Separation	7	The sewer system in this area is already separate.	No
Additional Sewer Inlets	6	The problems in the catchment are not due to lack of sewer inlet density/capacity. Scottish Water would also be reluctant to further increase inflow into the surface water network.	No
Enhanced Gully Pots	6	Enhanced gully pots have a positive environmental benefit but do little to resolve flooding.	No

Upstream Attenuation Tank	6	Glenshellach is already high in the catchment. Upstream attenuation won't retain a lot of flow away from the zone.	No
In-line Attenuation Tanks	6	It is preferred to discharge flow to the watercourse rather than storing but this may be reconsidered based on the fluvial model investigation.	No

7.1.2 Target Area 2: Lochavullin

	Score	Opportunity	Opportunity Exists
Extended Detention Basin	8	Lochavullin has very little space and is low lying. No over ground storage option would be viable.	No
Wetland	7	Lochavullin has very little space and is low lying. No over ground storage option would be viable.	No
Pond	7	Lochavullin has very little space and is low lying. No over ground storage option would be viable.	No
Enhanced Gully Pots	6	Enhanced gully pots have a positive environmental benefit but do little to resolve flooding.	No
Attenuation Basin	6	Lochavullin has very little space and is low lying. No over ground storage option would be viable.	No
Re-engineering Existing Watercourses	6	Reengineering the water course is further investigated in the main Oban Flood Study report.	Yes
Additional Sewer Inlets	5	The problems in the catchment are not due to lack of sewer inlet density/capacity. Scottish Water would also be reluctant to further increase inflow into the surface water network.	No
Swale	5	There are locations on the periphery of the zone where a swale could be installed.	Yes
Pipe Resizing	5	Pipe resizing would not solve the pluvial issues in this zone. Solutions which store water underground may require sewer upsizing to convey flow underground; detailed design is needed to understand if pipe upsizing is required.	Yes
Upstream Attenuation Tank	5	The pluvial catchment in this area does not have a significant upstream contribution. Upstream attenuation would not reduce the water levels in the zone significantly.	No
In-line Attenuation Tanks	5	The zone is very low lying and the network has a very low gradient. Additional inline storage would require a significant upsizing of the network to store flow. There may not be enough ground cover for a solution of this type to work, although additional investigation may be required.	Yes
Drainage Network Offline Storage	5	Offline storage could be installed under one of the car parks without creating too much disruption. Although it is an expensive option it may be necessary to hydraulically separate the Lochavullin during flood events, which would require additional storage.	Yes
Sewer Separation	5	The system in this area is separate so large scale separation is not required. There is a high level pipe which connects the two systems in Lochavullin Road. During extreme events flow from one network can discharge into the other network. From the model, during the 1 in 5year 600min event, 360m3 of surface water flow discharges into the foul network. Removing this connection pipe may reduce the volume of flow transfer into the foul sewer and thereby reduce flood risk for the foul sewer, but may worsen flood risk in the surface water sewer. Additional storage within the surface water sewer (or else at source) may therefore be required to ensure no net increase in flood risk if this connection was removed.	Yes
New Outfall to Watercourse	5	There are multiple outfalls to the watercourse in this area. The watercourse is part of the flooding issues in this zone, so it is unlikely that additional outfalls would resolve the issues.	No

Space Ves Ves	Enhanced Underground Void Space	4	This can be considered but due to the scale of the flooding problems it is unlikely to provide enough storage to resolve the flooding issues.	Yes
---------------	---------------------------------------	---	---	-----

7.1.3 Target Area 3: Soroba

	Soroba	Opportunity	Opportunity Exists
Extended Detention Basin	8	There are opportunities within the zone to install an extended detention basin.	Yes
Enhanced Gully Pots	6	Enhanced gully pots have a positive environmental benefit but do little to resolve flooding.	No
Swale	6	Due to the nature of the zone a swale is ideal, where possible, to convey flow to watercourses. Swales are particularly beneficial because they will remove pollutants before discharging to the watercourse.	Yes
Wetland	6	There are opportunities in the within the zone to install a wetland. This solution may not be prioritised in this zone.	Yes
Pond	6	There are opportunities in the within the zone to install a pond. This solution may not be prioritised in this zone.	Yes
Pipe Resizing	6	Improving flow to the watercourse may be required to reduce surcharge. This is not preferred compared to over ground conveyance but some short increases may be required.	No
Drainage Network Offline Storage	6	Offline storage is very expensive. It is preferred to discharge flow to the watercourse rather than storing but this may be reconsidered on the basis of the fluvial model investigation.	No
Sewer Separation	6	The system in this area is separate, although there are multiple locations where one network can discharge into the other over a weir.	No
New Outfall to Watercourse	6	The surcharge in the network is located near to the watercourse so additional outfalls may reduce this surcharge.	Yes
Overland Conveyance	5	Due to the nature of the zone overland conveyance is ideal, where possible, to convey flow to watercourses.	Yes
Additional Sewer Inlets	5	The problems in the catchment are not due to lack of sewer inlet density/capacity. Scottish Water would also be reluctant to further increase inflow into the surface water network.	No
Enhanced Underground Void Space	5	Due to the vicinity to the watercourse this is not considered a prioritised option.	No
Attenuation Basin	5	There are opportunities in the within the community to install an extended detention basin.	No
Upstream Attenuation Tank	5	Soroba is already high in the catchment. Upstream attenuation won't retain a lot of flow away from the zone.	No
In-line Attenuation Tanks	5	It is preferred to discharge flow to the watercourse rather than storing but this may be reconsidered on the basis of the fluvial model investigation.	No
Filter Drains	4	Filter drains are a possibility in the catchment. Filter drains will help infiltrate flow, reducing contributing to the watercourse. They do not have a major impact on flooding.	No

7.2 Works Packages

Five possible work packages or baseline solution to resolves pluvial flooding in Oban are presented in detail in Appendix G. There are three works packages that focus on the target areas, one that focuses on maintenance, and an area that requires further investigation which will improve confidence in the model.

Some of the options redirect flows from the drainage system into the water environments, and the watercourses. These solutions may need to be modelled in the fluvial model in order to assess their impacts. This will need to be done during the detailed design phase, and is not required at this stage.

7.3 Integration with Fluvial and Coastal Solutions

As discussed in Sections 5.4 to 5.6, there are multiple interactions between pluvial, fluvial and coastal flooding. Where appropriate, these have been considered within the outline design options being considered within the wider Oban Flood Study. These should be integrated into the detailed designs to provide integrated flood management solutions to reduce pluvial flood risk.

8 CONCLUSIONS

Surface water flooding poses a risk to people and property in Oban with there being historically multiple records of flooding events as a result of pluvial flooding, however Scottish Water do not identify any properties in Oban as being at risk of internal flooding due to sewer flooding for their required level of service (which is the 1 in 30 year event).

The pluvial issues in Oban are related to the topology of the ground, which is typically either steep or has a relatively shallow gradient. Where the ground is steep, overland flow occurs and where the ground has a shallow gradient, this flow accumulates and ponds.

To facilitate option identification and development, the surface water catchment area draining Oban has been separated into zones. The zones were assessed based on catchment characteristics. A long list of surface water options were identified. Each solution was assessed based on characteristics which corresponded with a catchment characteristic. This allowed the identification of options which were appropriate for each zone to be considered further.

Stakeholders within the community were consulted to develop an understanding of flood risk within the town. The consultations identified two target areas which have suffered from pluvial flooding; Glenshellach and Lochavullin.

A S16 hydraulic model developed by Scottish Water was used to understand the surface water drainage network and identify risks associated with the network. From this it was recognised that the network had some limitations, including the omission of the Council operated pump station at Lochavullin.

Three areas were identified as target areas; Glenshellach; Lochavullin; and, Soroba. Works packages have been developed for these zones based on the findings of the compatibility analysis.

Lochavullin is an area that was identified as being at high risk of pluvial flooding. The area is low lying, and the model shows there is flooding from the surface water network due to surcharge. This area also floods from fluvial sources during more extreme events and some pluvial flood risk reduction measures including provision of non-return valves are included within the fluvial flood protection measures proposed in this area. The works package proposed in this area includes improving the resilience of the pumping arrangement already present, provision of additional attenuation and storage of flows, and ongoing inspection, maintenance and repair of the piped drainage network.

The community in Glenshellach has reported surface water flooding. The hydraulic model showed several surcharged pipes and some flooding in the roads. The works package proposes increasing the density and capacity of sewer inlets and attenuation of overland flows, along with improving the routing of these flows through the urban areas to the nearby watercourse. The wider fluvial flood risk measures include improving the functioning of the Lon Mor floodplain to attenuate downstream flows, to avoid causing detriment to the flooding in the watercourse downstream.

Soroba is the most vulnerable SWMP zone, there are three most vulnerable users in this zone. The zone has a relatively high ground slope, which risks causing overland flow. The works package proposes improving overland conveyance and intercepting overland flow paths along with the provision of an attenuation basin prior to discharge back to the adjacent watercourse.

In addition to solution works packages there is also a works package related to maintenance of the network. Through field visits and stakeholder meetings it has been noted there has been some issues with maintenance across the town. It is recommended that Argyll & Bute Council collaborate with Scottish Water to improve communication to effectively maintain the surface water assets.

Finally, the hydraulic model shows that the trunk sewer is surcharged and flooding for a 1 in 5 year 60 minute event. There were multiple unknowns related to the trunk sewer, so further investigation is recommended. The results of this investigation may suggest upsizing the network is beneficial, or that additional storage is required, or that the model is overestimating flooding and no further investment is required. Scottish Water may need to upgrade their hydraulic model to remove some of these uncertainties.

In addition to these works packages SuDS can be integrated more effectively into future developments through the increased consideration of hillslope flows generated outwith the site being safely routed through developments without increasing flood risk elsewhere. This may avoid some of the present issued being experience in areas such as Glenshellach. There may be future opportunities to further improve the management of the undeveloped upslope areas to better attenuate overland flows in the vicinity of more sensitive receptors.

Climate change adaption should also be considered part of any solution. Rain storms are expected to become more frequent and more intense which is likely to increase pressure on existing infrastructure. Therefore, solutions should be designed to cope with future climate change scenarios. Many of the solutions proposed in the works packages require close collaboration with Scottish Water. Argyll & Bute Council should work with Scottish Water to optimise designs and develop solutions that benefit the community and do not have detrimental impacts on Scottish Water Infrastructure.

There are many opportunities to reduce surface water flood risk in Oban. The solutions require collaboration with multiple stakeholders within the community. In addition, the designs should be developed in conjunction with fluvial and tidal solutions where required.

REFERENCES

Oban Times. (2018, October 11). Swamped. pp. 1-2.

Scottish Advisory and Implementation Forum for Flooding. (2018). *Surface Water Management Planning Guidance* (Second ed.).

Scottish Water. (2017). Drainage Area Planning Project - MBV Stage.

APPENDICES

A DRAWINGS

0000EZ	ance Survey, data © Crown copy 185000	right/and data base right 2019		Cruch Sorths Lone Kase	187000	Do pot scale this	728000
Legend			Client	Status	FINIAL		Пар
			Argyll and Bute Council		IIIIAL		
	Study Area			Drawing No.		Revisi	on
	Surface Water Management Zon	es		170506-037		B	
			Project	Scale	Δ3	Date	
	Overland Flow Routes		Oban Flood Study	1:10,000	73	17 Dec 2019	
1 in 30yr F	Flood Depth			IP	hecked FM	Approved ITS	
	<100mm	Flood depths created using Scottish Water S16 hydraulic model and the		51			
	100mm 200mm	LiDAR data. Results shown are for the 3 hour duration event.	Title Overland Flow Daths and Prodicted	and the second	ATA	Craighall Business	
	100mm - 300mm	The overland flow paths were derived using a topographic analysis of the	Electric Dentities from C14 Martial	ENVIRO	J.	Glasgow, G4 9XA	
	>300mm	LiDAR digital terrain model.	Flood Depths from \$16 Model	Ce	ntre	Fax: 0141 341 5040	

Gisann Sheilsech Composition C	Lope Farm	Econoba Contains Ordnance Survey data ©	Crusch Sorobs	;e right 2019 – 🖉
18	5000	186000		87900 hot scale this map
Legend		ArgyII and Bute Council	FINAL	
Study Area			Drawing No. 170506-102	Revision
Surface Water Management Zone	S	Project	Scale	Date
1 in 30yr Surface Water Flood Depth		Oban Flood Study	1:10,000 A3	13 Nov 2019
>300mm	Note:		Drawn Checked	Approved ITS
🔲 100-300mm	Flood depths created using Scottish Water S16	Title		Craighall Business
<100mm	Results are the 1 in 30 year event.	Predicted Flood Depths from S16 Model for the 1 in 30 Year Flood	ENVIRO	Park, Eagle Street, Glasgow, G4 9XA Tel: 0141 341 5040
	The duration of the event was 180 minutes.			Fax: 0141 341 5045

Glaann Sholleach	Line Line Line Line Line Line Line Line	Contains Ordnance Survey data ©	Crown copyright	and data ba	se right 2019		
≅ ■ ► 185000		186000		187000	Do not scale this map		
Legend		ArgyII and Bute Council	Status	FINAL			
Study Area			Drawing No.	13	Revision		
Surface Water Management Zone	25	Project	Scale	٨ ٢	Date		
1 in 200yr Surface Water Flood Depth		Oban Flood Study	1:10,000	AS	13 Nov 2019		
> 300mm	Note:		JP	Checked EM	Approved ITS		
100-300mm	hydraulic model and the LiDAR data	Title			Craighall Business		
<100mm	Results are the 1 in 200 year event. The duration of the event was 180 minutes.	Predicted Flood Depths from S16 Model for the 1 in 200 year Flood	Park, Eagle Street, Glasgow, G4 9XA Tel: 0141 341 5040 Fax: 0141 341 5045				

Contains Ordnance Survey data @	Cruech Crown copyright and data base right 2019
186000	187000 Do not scale this map
ArgyII and Bute Council	Status FINAL
	Drawing No. Revision 170506-104
Project	Scale Date
Oban Flood Study	1:10,000 A3 13 Nov 2019
	JP Checked Approved ITS
Predicted Flood Depths from S16 Model for the 1 in 200 year+ CC Flood	Craighall Business Park, Eagle Street, Glasgow, G4 9XA Tel: 0141 341 5040 Fax: 0141 341 5045
3	Contains Ordnance Survey data Contains Ordnance Survey data Client Argyll and Bute Council Project Oban Flood Study Title Predicted Flood Depths from S16 Model for the 1 in 200 year+ CC Flood

B SOLUTIONS

Non-Structural Solutions

Land use planning policy - adhere to existing Land use planning policy - implement more stringent policies where required Clarify responsibilities for new surface water management infrastructure Clarify responsibilities for existing surface water management infrastructure (including SUDS) Emergency response plans Study - improve understanding Study - option appraisal and design Study - improve information on surface water flood events Self-help - business continuity planning Self-help - community flood action groups and resilient community plans Self-help - flood insurance Self-help - awareness- raising Self-help - property-level protection Self-help - property-level resilience (retrofit) Flood forecasting and warning Asset management and maintenance

Watercourse management and maintenance

Relocation

Structural Solutions

Description	Advantages	Disadvantages			
A.1 Rainwater Harvestin	g				
	Source control of flow	Rainwater can't be used for drinking, bathing			
Rainwater is intercepted,	Reduce demand for mains water for toilets, vehicle washing, horticulture etc.	Difficult to retrofit			
surfaces, for later use as	Effective for larger buildings with high non potable water demand	Less cost effective for smaller buildings			
Interception, conveyance		Requirement for pumping, unless unsightly above ground tank used			
and storage tank required.		Complex costly systems			
		Not so beneficial in areas of high rainfall			
A.2 Green Roofs					
Drought resistant	Source control of flow	High roof loadings due to growing medium			
vegetation on top of	Biodiversity	Comparative high cost			
within the growing medium	Amenity (if access possible)	Difficult to retrofit			
and reservoir layer, slowly releasing runoff by	Heat and sound insulation potential	Not suitable to retrofit on smaller residential building.			
		Requires flat or low pitch roof			

Description	Advantages	Disadvantages
evapotranspiration or via drainage layer.	No extra land take	Vegetation might require maintenance
B.3 Rain Garden		
Smaller scale engineered shallow depression with	Source control of flow	Requires sufficient soil infiltration potential
water tolerant deep rooted	Low cost	Pre-treatment required
vegetation. Installed in	Easy retrofit	sufficient soil depth required
relatively flat ground. Discharge through slow (24	Ease of maintenance	Small, limited impact on volume/flow reduction
hour) infiltration. Usually	Natural infiltration	
connected to single	Amenity	
property/curtilage.	Biodiversity	
B.4 Bioretention System	S	
Similar to rain gardens.	Source control of flow	Requires sufficient space
Diverse, small flexible vegetated water	Allows infiltration	Installation within urban environment may be disruptive
management features that	Potential for place-making in urban	Pre-treatment required
form part of a larger SuDS.	environment	
and/or to an underdrain	Amenity	Sufficient soil depth required
system. Can be designed bespoke or bought and installed as off the shelf proprietary units.	Biodiversity	
B.5 Proprietary Cellular	Free Pits	
	Source control of flow	Requires sufficient space
Proprietary system comprising of soil cells,	Proven reliability	Installation within urban environment may be disruptive
grilles, guards and selected trees grown specifically for	Manufacturer support in design and installation	Higher cost
robust urban growth. Soil cells may cover extensive	Can be retrofitted in constrained space	Pre-treatment required
linear reaches under pedestrian and cycle	Potential for place-making in urban environment	Sufficient soil depth required
pavements.	Amenity	
	Biodiversity	
B.6 Evapotranspiration		
For managing 'every day	Good amenity value	Low impact
rain' – maximise the use of	Cost	
plants to allow rain to		
evaporate into the		
atmosphere where it lands	Easy to retrofit	
(at source), creating little or		
B 7 Overland Conveyance		
Collect delay and conveyance	Amonity	Cost
conect, delay and convey	Amenity Riodiversity	Land take
surface water above ground	Biourversity	
to watercourses using green	Additional conveyance	Dependent upon levels
infrastructure techniques		
B.8 Grass Filter Strip	·	
	Reduces pollutants	Low impact

Description	Advantages	Disadvantages
Grass strips intercepting	Slows flow	
runoff from roads and urban	Cheap	
areas before entering		
watercourses or the	Easy to retrofit	
drainage network.		
B.9 Filter Drains		
Shallow trench drains with stone/gravel. Lateral	Easy incorporation beside roads	Pollutant build up and clogging not visible
interception from adjoining	Fits well into landscaping scheme	Small sub-catchment
impermeable surface. May		
allow infiltration, if a		Good installation and maintenance
geotextile used, or may be		crucial
lined with geomembrane.		
B.10 Additional Sewer In	lets	
Additional gully pots and	Location specific	May lead to increased downstream
strip drains will allow		flow
greater inflow to the sewer		
and reduce the risk of inlet	Removes surface water	
exceedance.	-	
B.11 Ennanced Gully Pot	S Cimple Colution	
Ennanced guily pots,	Simple Solution	Increased maintenance required
especially in steep areas, to		
anow interception of		
would otherwise be	Prevents downstream canacity loss	
deposited downstream	Frevents downstream capacity loss	
when low gradients are		
encountered		
B.12 Permeable Paving		
		Susceptible to clogging – can't be
	Allows dual use of space	used where high % of solids in run-off
Can include porous asphalt,		(issues with winter gritting)
reinforces grass/gravel May	Reduces flow to drainage network	Cyclical maintenance required
rely. Conveyance, by	Reduces need for pipe excavations	Higher cost than conventional
infiltration, of run-off to	Water quality treatment	Heavy axle loads may lead to failure
drainage and/or	Achieves sediment removal from	
underground attenuation	runoff	
systems.	Reduces ponding and formation of	
	ice	
B.13 Enhanced Undergro	und Void Space	
Base course under, typically,	Source control of flow	Limit to bearing capacity on surface
car parks with permeable	Large storage potential achievable	Disruptive to retrofit
paving cap. Enhanced	Can be combined with tree pits/other	
porosity can be achieved by	bioretention systems	
stope or proprietary		
geocellular sub-base	Treatment provided within	
Discharges via infiltration	nermeable paving	
and/or to an underdrain	hermeanie having	
system.		
B.14 Infiltration Basin		·
	Cost-effective	low impact

Description	Advantages	Disadvantages
Infiltration basins are	Reduces pollutants	Requires high infiltration soil
vegetated depressions		
designed to store runoff on		
the surface and infiltrate it	Small land take	Requires a large flat area
to the ground. They are	Sinairiana take	Requires a large, nat area
usually dry except in periods		
of heavy rainfall.		
B.15 Swale		
Shallow vegetated channels	Run-off flow reduction	Land take
with, typically, low gradient	Low cost	Difficult to retrofit in urban/
side slopes and flat bottom,	Low cost	suburban areas
however different profiles	Easo of construction	Maintenance (litter pick and grass
and planting may be	Ease of construction	cutting) essential
incorporated. Commonly	Visual amenity	Unsuitable for extremely steep areas
used for roadside drainage.	Mator quality treatment	Incompatible with roadside parking
Steeper flows may require	water quality treatment	or tree planting
check dams. Attenuation		
storage and infiltration is	Lower cost	
facilitated		
C.17 Wetland		-
Well vegetated shallow	Source control of flow	High land take
permanent pool with	Water quality treatment	Maintenance essential
attenuation capacity above	High biodiversity benefits	Specialist construction skills required
permanent storage level.	High amenity/education benefits	Pre-treatment required
Extensive shallow benching	Fases river flooding	Requires engineering to intercept
encourages sustainable	Lases river noouring	run-off before entering network
aquatic planting. Outfall to		Requires baseflow
drainage network. Storage		
may be enhanced using		Potential for adverse nutrient release
floating wetlands.		
C.18 Pond		
Vegetated deeper	Source control of flow	High land take
permanent pool and greater	Manages both high and low flows	Maintenance essential (especially to
attenuation capacity than		avoid colonisation by invasive species)
wetland. Smaller marginal	Pollutant removal	Regular inflow required
aquatic planting area. Lower	Biodiversity	Not suitable for steep locations
honofit, but simpler	Amenity	Perceived safety issue
maintonance, than wotland		
Pre-treatment not required	Eases river flooding	
Outfall to drainage network		
C 10 Attonuation Pacin		
C.15 Attenuation basin		Lligh land take (if dual use not
vegetated dry pond that has	Source control of flow	High land take (if dual use not
an unrestricted iniet and	Menages both bigh and low flows	
detains run-off water during		Ividintenance essential
storm conditions and	Amenity space	Pre-treatment required
releases water to the	Eases river flooding	Performance dependant on inlet/
combined or storm sewer	Cimple design and sometime the	
network when flows reduce	simple design and construction	
Lower amenity/ biodiversity		
henefit but simpler	Proven track record	
maintenance, than both		

Description	Advantages	Disadvantages
pond and wetland. Pre-		
treatment required.		
C.20 Extended Detention	n Basin	
An extended detention	High impact	Major cost
basin is a facility	Can be dual use for example car park	Land take
constructed through filling	or playground	
and/or excavation that		
provides temporary storage		
of stormwater runoff. It has		
an outlet structure that	Manages extreme flows	Performance dependant on inlet/
rupoff inflows and promotes		outlet levels
the settlement of		
pollutants		
D 22 Pine Resizing		
	Topical nine capacity increase	Cost
canacity by increasing	High impact to local network	Potential for significant disruption
diameter of existing nines at	high impact to local network	Complicated to design
locations that affect		
known/modelled		Must be well designed to not increase
surcharging.		downstream risk
D.23 Upstream Attenuat	ion Tank	
Underground attenuation	Dual land use	No amenity / biodiversity value
tank with flow control at	Source control of flow	Pre-treatment required
network connection. Inflow	Very high void ratios	Sufficient depth and cover required
from surface water	Manages high flow events	Difficult maintenance
interception (new	Eases river flooding	
engineering). Includes		
geocellular proprietary	Long term stability	
concrete nine for example		
D 24 In-line Attenuation	Tanks	
Attenuation capacity	In line storage	Cost
provided for storm or	Suitable for combined and storm	6031
combined sewerage in	sewers	Disruption
underground tanks. Inflow	Reduces downstream peak flows that	
from dual manhole weir.	are liable to surcharging	Land required
Outflow from flow control		Design must allow for ease of
device or by pumping.		maintenance
D.25 Drainage Network	Offline Storage	
Divert surface water to	High impact	Major cost
storage tanks or by	Can be constructed away from	Sonvicos disruption
providing storage in the	significant roadways	Services distuption
existing drainage / flood		Maintenance required
management network.		Maintenance required
D.26 Sewer Separation		
Remove storm water inflow	Reduced flow to combined sewer	Major cost
from combined sewer	Reduces entrained sediment load	Acute disruption to property owners
network. Create new small	received by combined sewer	and road users
storm sewer networks with	Subsequent increased foul water	Significant work is required to have a
separate discharges to	capacity in network will enable future	major impact
watercourses. This Work	urban development in line with the	
may necessitate provision of	LULAI FIAII	1

Description	Advantages	Disadvantages				
additional treatment of run-						
off before discharge to the						
natural water environment.						
D.27 New Outfall to Wat	ercourse					
Increase capacity or build	High impact	Potential for major disruption				
new underground pipes for		Difficult to site new outfalls to be				
surface water.		hydraulically effective				
D.28 WWTW Upgrade						
Increase Wastewater	Increased combined sewer capacity	Major cost				
Treatment Works capacity						
to enable increased capacity	Increased potential for urban	Major disruption to combined water				
in the trunk combined	expansion	treatment				
sewer						
E.29 Re-engineering Exis	ting Watercourses					
Put in place, for example,	Storage	Major cost				
storage (on-line or off-line	Conveyance	Existing land use issues				
storage), embankments,	Flood protection					
walls or flood diversion	Amenity					
channels in urban burns, all	Biodiversity					
of which can reduce flood						
risk from the watercourse						
itself. Also restoring the						
upstream flood plain and	Additional conveyance					
removing cuiverts could						
levels.						

C ZONE COMPATIBILITY ANALYSIS

		Rainfall ponding on the surface	Flow accumulating and flowing overland	Network is Undersized Causing Surcharge	Downstream Drainage Network is Surcharged	Outlet Drowned by the Receiving Water		Gradient	Green Space	Utilised Space	Density of Buildings	Density of Transport Infrastructure
	1	No effect/ minor impact	No effect/ minor impact	No effect/ minor impact	No effect/ minor impact	No effect/ minor impact	А	The zone generally has a very steep gradient	No green space is available.	No utilised space is available.	Dense buildings	A dense area and one of the major roads pass through the zone
	2	Contributor	Contributor	Contributor	Contributor	Contributor	В	The zone generally has a steep gradient	Some green space is available	Some utilised space may be available	Medium density buildings	One of the major roads pass through the zone.
	3	Major Cause	Major Cause	Major Cause	Major Cause	Major Cause	С	The zone generally has a low gradient	A significant area of green space is available	A significant area of utilised space may be available	Sparse buildings	Minimal Services
Glenshellach		2	3	3	1	1		В	С	В	С	С
Soroba		2	3		1	1		В	С	В	В	А
Gallanach				1	1	2		А	С	А	С	С
Lochavullin		1	2	3	1	3		С	А	С	А	A
Glencruitten / Mossfield					1	1		В	с	С	С	С
Soroba Road (Lower)		1	3	1	3	1		С	А	В	А	A
Town Centre - South		1	2	1	3	1		С	А	А	А	A
Dunollie		2	3	2	2	1		А	В	В	В	В
Longsdale - North		2	3	3	3	1		В	с	С	В	В
Longsdale - South		2	3	1	1	1		А	В	А	В	С
Corran		1	3	3	3	1		В	В	С	А	А
Town Centre - North		2	2			1		В	А	В	А	А

D SOLUTION COMPATIBILITY ANALYSIS

		Reduces Ponding	Reduces Overland Flow	Increases Local Network Capacity	Reduces Downstream Network Surcharge	Reduces Level of the Receiving Water		Gradient	Land Take	Conflict with Existing Uses	Proximity to Building Foundations	Disruption		Magnitude of Impact	Challenges Relating to Implementation	Multifunctional Uses
	1	Does not have an impact	Does not have an impact	Does not have an impact	Does not have an impact	Does not have an impact	А	Can be constructed on any gradient, low to very steep	The solution has low space requirement	Can be constructed on already utilised land, existing infrastructure can be maintained or restored	The solution can be located close to or on a building	Not disruptive, only minor impacts to transport	0	Small scale of Impact (Everyday)	Very challenging to implement	No additional amenity value
	2	Has minor impact	Has minor impact	Has minor impact	Has minor impact	Has minor impact	В	Can be constructed on most gradients except very steep	The solution has a medium space requirement		The solution must consider the foundations in the design but it wont expose the building to a high risk.	Some disruption possible	1	Some impact (More Rain)	Implementation challenges that will be overcome	Medium additional amenity value, one or two additional benefits
Option	3	Has significant impact	Has significant impact	Has significant impact	Has significant impact	Has significant impact	С	Can only be constructed on low gradients	The solution has a high space requirement	Construction will eliminate existing features and infrastructure	The solution would put adjacent buildings at risk and must be located at a safe distance	Extremely disruptive, potentially affecting services for a significant length of time	2	Significant Impact (Extreme Event)	Few foreseeable implementation challenges	High additional amenity value, multiple other uses or benefits
A.1 Rainwater Harvesting		3	2	2	1	1		А	А	A	A	A		0	2	1
A.2 Green Roofs		3	2	2	1	1		A	A	A	A	A		0	2	1
B.3 Rain Garden		3	2	2	1	1		A	A	A	A	В		1	2	1
B.4 Bioretention Systems		3	2	2	1	1	-	A	A	A	A	В		1	2	1
B.5 Proprietary Cellular Tree Pits		3	2	2	1	1	-	A	A	A	A	A		1	2	1
B.6 Evapotranspiration		3	2	2	1	1		A	С	A	C	A		0	1	2
B.7 Overland Conveyance		2	3	2	1	1		A	A	A	A	В		1	2	0
B.8 Grass Filter Strip		3	2	2	1	1		A	A	A	A	A		0	2	0
B.9 Filter Drains		3	3	2	1	1		A	A	A	В	В		0	2	0
B.10 Additional Sewer Inlets		1	3	3	1	1		A	A	A	A	В		1	0	0
B.11 Enhanced Gully Pots		1	3	3	1	1		A	A	A	A	A		1	0	0
B.12 Permeable Paving		3	2	2	1	1		A	A	A	A	В		0	2	0
B.13 Ennanced Underground Void Space		1	1	3	2	1		в	A	A	В	В		1	1	0
		3	2	2	1	1			A	A	В	A		1	1	0
B.15 Swale		2	3	3	1	1		A	В	A	A	В		1	1	1
C.12 Dond		1	1	2	2	2						A		2	1	2
C 10 Attenuation Pagin		1	1	2	2	2			D D			A		2	1	1
C 20 Extended Detention Rosin		1	1	2	2	2			В		R R	A		2	1	2
D 22 Pine Recizing		1	1	3	2	1		<u>ر</u>	A .	A .	B	A C		2	0	0
D.22 Linstroam Attenuation Tank		1	1	2	2	1		C C	A .	A	B	C C		2	0	0
D.24 In-line Attenuation Tanks		1	1	3	3	1			Α	Δ	B			2	0	0
D.25 Drainage Network Offline Storage		1	1	3	3	1		A	A	Δ	B	C		2	0	0
D.26 Sewer Separation		1	1	3	3	1		A	A	Δ	R			2	0	0
D.27 New Outfall to Watercourse		1	1	3	1	1		A	A	A	B	B		2		0
D.28 WWTW Upgrade		1	1	1	3	1		A	A	A	B	C		2	0	0
E.29 Re-engineering Existing Watercourses		1	1	1	1	3		A	В	A	В	В		2	0	2

E SCREENING RESULTS

	Glenshellach	Soroba	Gallanach	Lochavullin	Glencruitten / Mossfield	Soroba Road (Lower)	Town Centre - South	Dunollie	Longsdale - North	Longsdale - South	Corran	Town Centre - North
A.1 Rainwater Harvesting			6		6							
A.2 Green Roofs			6		6							
B.3 Rain Garden			7		7							
B.4 Bioretention Systems			7		7							
B.5 Proprietary Cellular Tree Pits			7		7							
B.6 Evapotranspiration			7		7							
B.7 Overland Conveyance	8	5	6		6	5		6	6	6	5	
B.8 Grass Filter Strip			5		5							
B.9 Filter Drains	7	4	5		5	3		5	5	5	3	
B.10 Additional Sewer Inlets	6	5	6	5	6	5		6	6	6	5	5
B.11 Enhanced Gully Pots	6	6	6	6	6	6		6	6	6	6	6
B.12 Permeable Paving			5		5							
B.13 Enhanced Underground Void Space	7	5		4	6				6		4	5
B.14 Infiltration Basin			5		5							
B.15 Swale	8	6	7	5	7	5		7	7	7	6	6
C.17 Wetland	8	6		7	8				7		6	6
C.18 Pond	8	6		7	8				7		6	6
C.19 Attenuation Basin	7	5		6	7				6		6	5
C.20 Extended Detention Basin	9	8		8	8				8		7	8
D.22 Pipe Resizing	7	6		5	7				6		5	5
D.23 Upstream Attenuation Tank	6	5		5	6	5	5		5		4	4
D.24 In-line Attenuation Tanks	6	5		5	6	5	5		5		4	4
D.25 Drainage Network Offline Storage	7	6		5	7	5	5		6		5	5
D.26 Sewer Separation	7	6		5	7	5	5		6		5	5
D.27 New Outfall to Watercourse	8	6		5	7				7		5	6
D.28 WWTW Upgrade						5	5		6		5	5
E.29 Re-engineering Existing Watercourses				6								

F WORKED EXAMPLE

The following provides a worked example of how the shortlist was achieved for the Glenshellach Zone.

Root Cause Compatibility

The first step is to identify which of the solutions resolve one of the major root causes in Glenshellach. If a solution does not resolve a major root cause it will not be further considered.

Glenshellach has two major root causes, *Flow accumulating and flowing overland* and *Network is undersized and causing Surcharged*, shown in Table A.

		Rainfall ponding on the surface	Flow accumulating and flowing overland	Network is Undersized Causing Surcharge	Downstream Drainage Network is Surcharged	Outlet Drowned by the Receiving Water
	1	No effect/ minor impact	No effect/ minor impact	No effect/ minor impact	No effect/ minor impact	No effect/ minor impact
	2	Contributor	Contributor	Contributor	Contributor	Contributor
	3	Major Cause	Major Cause	Major Cause	Major Cause	Major Cause
Glenshellach		2			1	1

Table A: Glenshellach flooding root causes

There are 16 solutions which resolve one of these major root causes shown in Table B. These are the solutions which will be further assessed and scored.

Table B: Solutions which resolve a Glenshellach Root Cause

B.7 Overland Conveyance	C.17 Wetland	D.22 Pipe Resizing
B.9 Filter Drains	C.18 Pond	D.23 Upstream Attenuation Tank
B.10 Additional Sewer Inlets	C.19 Attenuation Basin	D.24 In-line Attenuation Tanks
B.11 Enhanced Gully Pots	C.20 Extended Detention Basin	D.25 Drainage Network Offline Storage
B.13 Enhanced Underground Void Space		D.26 Sewer Separation
B.15 Swale		D.27 New Outfall to Watercourse

Catchment Compatibility

The next step is to identify solution which are appropriate and suitable to the zone. If a solution is compatible it will receive a score of 1.

		Gradient	Green Space	Utilised Space	Density of Buildings	Density of Important Services
	A The zone generally has a very steep gradient The zone generally has a steep gradient		No green space is available.	No utilised space is available.	Dense buildings	A dense area and one of the major roads pass through the zone
			Some green space is available	Some utilised space may be available	Medium density buildings	One of the major roads pass through the zone.
С		The zone generally has a low gradient	A significant area of green space is available	A significant area of utilised Sparse space may be buildings available		Minimal Services
Glenshellach		В	С	В	С	С

Table C: Catchment Descriptors Glenshellach

Gradient

Glenshellach has a generally steep gradient. Solutions which can only be constructed in low gradient areas will not score for this category. For example, a wetland will not be appropriate as it will be difficult to construct on the steep slopes. On the other hand, an overland conveyance solution would be able to utilise the slopes to convey water away from where there is flooding.

Green Space

Glenshellach has a significant area of greenspace available. All solutions benefit from having a large amount greenspace and therefore all solutions would be appropriate in Glenshellach and will score for this category. Other zones, such as Lochavullin, does not have a lot of greenspace available, so some solutions such as Evapotranspiration will not score in this category in Lochavullin.

Utilised Space

Glenshellach has utilised space available, an example of this is located beside Glen Gallen Drive in a recreation field. Solutions which cannot be constructed on utilised land without removing the current use will not score in this category. For example, constructing a pond on a recreation field or carpark will completely supersede the existing use.

Density of Buildings

Glenshellach has a low density of buildings. Due to the low density of buildings every solution is appropriate for consideration in Glenshellach. Other zones such as Town Centre South have very high density of the solutions would not be appropriate. Solutions that risk the foundations of existing buildings either through infiltration of root intrusion, therefore evapotranspiration or infiltration basins would not be appropriate in the town centre south.

Density of Important Services

Glenshellach does not have important services. Therefore, every solution is appropriate for consideration as they would not disrupt existing services. Other zones such as Soroba has major roads passing through the zone. Solutions which disrupt these services, such as major underground pipe works, would not score for this category.

Compatibility Score

Based on the scoring above the following compatibility scores were achieved by each solution:

Option	Gradient	Green Space	Utilised Space	Density of Buildings	Density of Important Services	Compatibility score				
A.1 Rainwater Harvesting	Does not Resolve a flooding Root Cause									
A.2 Green Roofs	Does not Resolve a flooding Root Cause									
B.3 Rain Garden		Does not Resolve a flooding Root Cause								
B.4 Bioretention Systems		Does not Resolve a flooding Root Cause								
B.5 Proprietary Cellular Tree Pits		Does not Resolve a flooding Root Cause								
B.6 Evapotranspiration		Does	not Resolve	e a flooding	Root Cause					
B.7 Overland Conveyance	1	1	1	1	1	5				
B.8 Grass Filter Strip		Does	not Resolve	a flooding	Root Cause	-				
B.9 Filter Drains	1	1	1	1	1	5				
B.10 Additional Sewer Inlets	1	1	1	1	1	5				
B.11 Enhanced Gully Pots	1	1	1	1	1	5				
B.12 Permeable paving		Does	not Resolve	a flooding	Root Cause	_				
B.13 Enhanced Underground Void Space	1	1	1	1	1	5				
B.14 Infiltration Basin		Does not Resolve a flooding Root Cause								
B.15 Swale	1	1	1	1	1	5				
C.17 Wetland	0	1	0	1	1	3				
C.18 Pond	0	1	0	1	1	3				
C.19 Attenuation Basin	0	1	0	1	1	3				
C.20 Extended Detention Basin	0	1	1	1	1	4				
D.22 Pipe Resizing	1	1	1	1	1	5				
D.23 Upstream Attenuation Tank	0	1	1	1	1	4				
D.24 In-line Attenuation Tanks	0	1	1	1	1	4				
D.25 Drainage Network Offline Storage	1	1	1	1	1	5				
D.26 Sewer Separation	1	1	1	1	1	5				
D.27 New Outfall to Watercourse	1	1	1	1	1	5				
D.28 WWTW Upgrade	Does not Resolve a flooding Root Cause									
E.29 Re-engineering Existing Watercourses	Does not Resolve a flooding Root Cause									
Solution Viability Score

Described in section 6.2. The solution viability score is solution specific and is the total of the magnitude of impact, challenges relating to implementation and potential multiple benefits. Table E shows the totals for each solution.

Table E: Solution viability score totals

Solution	Magnitude of Impact	Challenges Relating to Implementation	Multifunctional Uses	Total Solution Viability Score
A.1 Rainwater Harvesting	0	2	1	3
A.2 Green Roofs	0	2	1	3
B.3 Rain Garden	1	2	1	4
B.4 Bioretention Systems	1	2	1	4
B.5 Proprietary Cellular Tree Pits	1	2	1	4
B.6 Evapotranspiration	0	1	2	3
B.7 Overland Conveyance	1	2	0	3
B.8 Grass Filter Strip	0	2	0	2
B.9 Filter Drains	0	2	0	2
B.10 Additional Sewer Inlets	1	0	0	1
B.11 Enhanced Gully Pots	1	0	0	1
B.12 Permeable paving	0	2	0	2
B.13 Enhanced Underground Void Space	1	1	0	2
B.14 Infiltration Basin	1	1	0	2
B.15 Swale	1	1	1	3
C.17 Wetland	2	1	2	5
C.18 Pond	2	1	2	5
C.19 Attenuation Basin	2	1	1	4
C.20 Extended Detention Basin	2	1	2	5
D.22 Pipe Resizing	2	0	0	2
D.23 Upstream Attenuation Tank	2	0	0	2
D.24 In-line Attenuation Tanks	2	0	0	2
D.25 Drainage Network Offline Storage	2	0	0	2
D.26 Sewer Separation	2	0	0	2
D.27 New Outfall to Watercourse	2	1	0	3
D.28 WWTW Upgrade	2	0	0	2
E.29 Re-engineering Existing Watercourses	2	0	2	4

Total Score

The final score is the combination of the compatibility score and the solution viability score. Only those solutions that resolve a root cause in that zone receives a score. Table F shows the total scores for solutions in Glenshellach.

Solution	Compatibilty	Viabilty	Total Score
A 1 Bainwater Harvesting	30012	30012	
A 2 Green Roofs	_	_	_
B 3 Rain Garden	_	_	_
B 4 Bioretention Systems	_	_	_
B.5. Pronzietary Cellular Tree Pits	_	_	_
B.6. Evanotranspiration	_	_	_
B 7 Overland Conveyance		- 2	-
B & Grass Filter Strin	5	3	0
B 9 Eilter Drains		-	- 7
B 10 Additional Sewer Inlets	5	2	7
P.11 Enhanced Gully Detc	<u> </u>	1	6
P.12 Permashia paving	5	L	0
B.12 Permeable paving	-	-	- 7
B.13 Enhanced Underground Void Space	5	2	/
B.14 Infiltration Basin	-	-	-
B.15 Swale	5	3	8
C.17 Wetland	3	5	8
C.18 Pond	3	5	8
C.19 Attenuation Basin	3	4	7
C.20 Extended Detention Basin	4	5	9
D.22 Pipe Resizing	5	2	7
D.23 Upstream Attenuation Tank	4	2	6
D.24 In-line Attenuation Tanks	4	2	6
D.25 Drainage Network Offline Storage	5	2	7
D.26 Sewer Separation	5	2	7
D.27 New Outfall to Watercourse	5	3	8
D.28 WWTW Upgrade	-	-	-
E.29 Re-engineering Existing Watercourses	-	-	-

Other Zones

This methodology is repeated for all other zones to score each solution for each zone. This means different solutions will be on the shortlist in different areas, and different solutions have the potential to be scored higher.

G WORKS PACKAGES

Maintenance

The reduce the risk of ponding on the surface and to restore the efficiency of the network a maintenance schedule is required.

Description

There is evidence that the network is not working as designed. Site walkovers have identified areas that require a regular maintenance schedule to resolve ongoing issues. During the stakeholder workshop a broken pipe was potentially identified and provides an example of

Multiple areas have been identified as requiring maintenance work. Some of this work involves a one off action such as replacing a broken pipe, but there is also a requirement for a schedule to maintain problem areas.

The following list of actions is not an exhaustive list. This has been compiled from the findings of the site walkover visits.

Solution	Location	Description	Impact
1. Identify	Combie Street	It has been suggested that due to recent LiDL construction works, the	Simple fix to reduce the flood risk near to Lochavullin.
and repair		pipe in this area may be cracked, broken or have collapsed entirely.	
broken pipe.			
2. Clear	Lochavullin and	Some of the gullies are completely blocked. When the gullies are	Clearing the gullies will mean the network responds as
gullies	Soroba	blocked they are unable to drain surface water and create ponds on	designs and should reduce ponding during small
		the surface.	events.
3. Clear pipe	Lochavullin and	The model has 129 pipes with sediment, based on survey data.	Removing sediment will allow pipes to operate at their
blockage and	elsewhere	Sediment and blockages restrict flow reduces the networks ability to	maximum capacity.
sediment		pass the flow forward. Pipes with a low gradient are particularly at risk	
		of sediment and the flow velocity is reduced.	
		This sediment should be regularly cleared to make sure it cannot limit	
		flow during extreme events, pipes with a low gradient should be a	
		significant part of the maintenance schedule.	
4. Pump	Lochavullin	During the October 2018 event the Lochavullin pump was	Regular pump maintenance will reduce the risk of
Maintenance		compromised which exacerbated flooding in this area.	failure during a major event in the future.

In addition to maintenance, Scottish Water have suggested that issues and flooded is not always communicated effectively with them. The community may not know who to communicate with when they have an issue, and when they do inform someone the message may not be passed on. Therefore, working with Scottish Water and improving communication with them is a priority. Promotion of how community members report their surface water issues should also be prioritised, for example a flooding hotline on the Argyll and Bute website.

Risk and Uncertainty

As stated above the problems listed are not a complete list of required maintenance in the catchment. The actual maintenance requirement is unknown and may require further investigation.

The sediment included in the model is based on survey data, areas that have not been surveyed cannot be assumed to have sediment, therefore there could be more pipes with sediment in the catchment. Also, sediment can be transitory, so it may longer be where it was surveyed.

There is a risk that improving the drainage by clearing the gullies will increase the flow in the network and potentially increase the pressures elsewhere in the network. This should be managed by formal solutions.

Further Investigation and Next Steps

A quality survey of the network is required to identify where there are existing issues and what is the current state of the network across the catchment. Once the extent of the required maintenance is understood a schedule can be developed in conjunction with Scottish Water to make sure the network is at its maximum efficiency.

INDICATIVE IMPACT (1 low - 5 high)	2	INDICATIVE COST (1 low - 5 high)	1
INDICATIVE RISK & UNCERTAINTY (1 low - 5 high)	1		

Argyll & Bute Council Oban Flood Study; Report 2C: Surface Water Management Plan

Trunk Sewer Further Investigation

A large proportion of the surface water network drains to the Corran Pumping Station (PS), before being pumped to the Wastewater Treatment Works (WwTW). The model shows that the trunk sewer is surcharged and floods in the town centre along the A85. Upgrading the trunk sewer will improve the capacity of the network and reduce the surcharge in the network. Improving Corran PS or the WwTW could also be considered.

The model has multiple uncertainties so there may be multiple reasons for surcharge in the trunk sewer and further investigation is required before developing these solutions. Any work in this area could be extremely disruptive and expensive further investigation and developing the hydraulic model will reduce the

The trunk sewer also impacts other areas of the catchment. Much of the network drains to the WwTW via the trunk sewer. Reducing surcharge in the trunk sewer will reduce flooding and surcharge elsewhere in the network.

The Corran PS has a pump which discharges flow at the WwTW with a maximum flow of 160l/s, and two emergency pumps which discharge to the flow with a combined discharge of 160l/s. There is a storage tank of with an area of 440m², an invert level of -5.077 and a soffit of 4.084 and a total volume of 4 030m³.

Solution Description

At this stage it is recommended to focus on resolving the uncertainties in the model and to invest in upgrading the model of the pumping station trunk sewer. This will increase confidence in the model at the trunk sewer and elsewhere in the network.

Option	Description	Impact
Upsize the Trunk	Increasing the size of the trunk sewer will allow more flow to pass through	The trunk sewer is surcharged by depth only in the 1 in 5yr
Sewer.	it during.	event. Upsizing the trunk sewer may not change the depth in
	The network is surcharged by depth	the trunk sewer. Significant upsizing could provide additional.
		Upsizing the trunk sewer would have a significant disruptive
		impact to the town.
		This would also be one of the most expensive option.
Increase the	Increasing the downstream pass forward flow at Corran PS to the WwTW.	This solution would have a major impact on the WwTW. There is
pumping	Increasing the flow will allow the This option could also include an	a maximum the WwTW can receive, therefore increasing the
forward	additional storage tank at the treatment works.	pumping rate would require additional storage at the WwTW. It
		may also require upgrade to the rising main.
Removing the	Flow is retained in the trunk sewer by an orifice. The model indicates that	Removing the orifice will reduce the upstream depth and will
Pumping station	the storage tank located at Corran PS is not being fully utilised even though	fully utilise the storage tank. This may increase the volume of
orifice.	there is upstream flooding.	flow going into the storage tank at low return period events
		meaning more combined flows discharging into the sea.
Emergency	There is a pumped emergency outfall which discharges to the sea, this is	Increasing the emergency outfall discharge will mean more
Outfall	limited to 160l/s. The contributing network has an approximate maximum	combined flows discharge to the sea.
	flow of 1m ³ /s therefore there is a risk that the storage tank could be full	
	after 1.5hours, therefore the capacity of the emergency outfall could be	
	reviewed to ensure the risk of the storage tank being full is minimised	
Increase the	There is, potentially, a surface water sewer from the distillery which crosses	Increase the number outfalls will mean more combined flows
number of	the trunk sewer. The trunk sewer could discharge to this during an	discharge to the sea.
outfalls	emergency to reduce the risk of flooding.	The coastal levels will need to be considered for this option. If
		the tide levels drown the outfalls during a major event it will not
		reduce the surcharge in the network.

The trunk sewer draining the network is surcharged by depth during a 1in5yr event. Multiple options could be considered at a later stage:

Risk and Uncertainty

Uncertainty	Description			
Emergency outfall	The model has a pump which pu	The model has a pump which pumps flow to the sea during an extreme event. There is some uncertainty about how this is		
	perating in the model. Th			
CSO at the George Hotel.	The model does not include a CS	O at the G	eorge Hotel. Scottish Water reported that there should be an outfall here v	which
	is not modelled.			
Distillery Surface Water	there is potentially a Surface Wa	iter Line fro	om the distillery with a diameter of 1050mm. It is not clear if this is a privat	e or a
	SW asset. This is not currently m	nodelled, a	nd could potentially be conveying some of the surface water that is flowing	to the
	Corran PS.			
Pumping Station Orifice	There is a modelled orifice which	There is a modelled orifice which retains the flow in the trunk sewer. The model shows flooding from the trunk sewer when		
	there is still approximately 2000m ³ available in the storage tank. This is not operating correctly and therefore need to be			
	fully reviewed.			
Further investigation				
The uncertainties described above req	The uncertainties described above require significant investigation before investing in the options suggested above. Improving the model may remove modelled			
flooding in this area altogether, and reduce flooding in other areas, this will focus investment on where it is really required and can provide the most benefits.				
INDICATIVE IMPACT (1 low - 5 high) 1 INDICATIVE COST (1 low - 5 high) 2			2	
INDICATIVE RISK & UNCERTAINTY (1 low - 5 high) 1				

Argyll & Bute Council Oban Flood Study; Report 2C: Surface Water Management Plan

Soroba

Soroba has two locations where there is potentially surcharge and flooding. The hydraulic model indicates that the school, a highly vulnerable user, is at risk of overland flooding.

The network in this area is mostly separate but there are multiple connections between the surface water and foul networks. The surface water does discharge into the foul and there may be foul flooding due to surface water in the foul network.

Description

The solution proposal focuses on two areas in Soroba. Millpark Road has multiple properties at risk of pluvial flooding. The hydraulic model is surcharged during a 1in5yr event. The solution in this area improves overland conveyance to discharge into the Soroba Burn, which will reduce the pressure on the network. Rockfield Primary School is a highly vulnerable user and is at risk of pluvial flooding. The hydraulic model is surcharged near the school and there are multiple flooded nodes. The solution focuses on improving overland flow and storing the pluvial flow in an existing depression before discharging into the Soroba Burn.

Solution	Location	Description	Benefit	Dimensions
1. Overland	Millpark	The overland conveyance intercepts overland flow from properties	Intercepts runoff from the	Length = 300m (this is the
Conveyance	Road and	and road. It carries flow along the edge of the Millpark Road and	road and properties.	sum of multiple lengths of
	Millpark	Millpark Avenue.	Conveys flow into the	swale)
	Avenue	There is green space along the edge of the roads which could be	Watercourse	
		utilised without conflicting with the community.		
2. Flow	Rockfield	The model indicates that there is surcharge and overland flow in	Drains overland flow away	Unknown
Routing	Primary	the school grounds. This is likely to be routed overland through	from the school.	
	School	the grounds into the road. By routing flow overland, and not into	Reduces the flow into the	
		the network the pressure on the network will be reduced.	surface water network.	
		There are many options for flow routing at the school:	Excellent opportunity to	
		Rainwater harvesting.	provide multiple benefits	
		 Infiltration through school gardens 	and to engage with the	
		Formal overland flow paths	community.	
		• Swale		
		It is recommended that precise options for the school are		
		produced in consultation to maximise benefits.		
		Any excess overland flow can drain overland into a swale which		
		drains to the downstream attenuation pond.		
3. Overland	From	The overland conveyance collects flow from the school and	Drains overland flow away	Upstream level= 38.2mAOD
Conveyance	Rockfield	conveys the flow to the A816 overland conveyance.	from the school.	Downstream level=
	Primary		Reduces the flow into the	34.7mAOD
	School to		surface water network.	Length = 100m
4 Overland	Adiacont to	The overland conveyance intercents excess flow from the school	Drains overland flow away	Linstroom loval- 26 6mAOD
4. Overland		It carries flow along the edge of the A816 and drains to the	from the school	Downstream level-
conveyance	A010	attenuation basin	Reduces the flow into the	
			surface water petwork	Length = $175m$
5. Attenuation	Corner of	There is an existing basin at this site. This was likely created due to	There is an existing basin	$Area = 1/00m^2$
Basin	A816 and	the construction of the A816. There is already pluvial flow that	which reduces the work	Volume= $3750m^3$
	Fire Station	naturally collects at this location.	required for this solution.	3,300
			The basin has a very large	
			potential volume (this needs	
			to be confirmed by survey).	
6. Drainage	Crossing the	A small buried pipe conveys flow from the attenuation tank, across	This is a short length of pipe	Upstream level= 14mAOD
Pipe	A816	the A816 and into the Soroba Burn. There is likely to be an	to drain the basin.	Downstream level= 11mAOD
		interaction with the Soroba Burn.		Length under the road =
				25m
				Length from road to Soroba
				Burn = 35m
Impact				
The proposed sol	ution will have p	positive impacts on the properties around Millpark Road and at the sch	nool. There is an opportunity to	reduce the surcharge levels in
the network by u	tilising overland	flow route, this may also reduce the level in the foul and combined sy	stem downstream, as the mode	el indicates that the surface
water discharges	into the foul ne	twork as well as the watercourse. The solutions at the school provide a	an opportunity to engage with t	he community and provide
additional benefit	ts to the school,	for example rain water harvesting could support a school garden. Thi	s will require coordination with	the school.
In addition to red	ucing pluvial flo	od risk the solution may also have a positive impact on reducing the le	vel in the watercourse. The att	enuation basin is estimated to
retain 3750m ³ , ar	nd therefore red	luce downstream fluvial levels.		

Risk and Uncertainty

The solutions ultimately discharge into the Soroba Burn, the levels in the watercourse need to be confirmed by a fluvial model before confirming their viability.

Further Investigation and Next Steps
basin.
The model has an outian which discharges in none of the me station. This needs to be committed. If that is correct, this could also be connected to the attendation

The fluvial flood levels will influence the viability of these solutions and the design will need to consider predicted fluvial level.

INDICATIVE IMPACT (1 low - 5 high)	3	INDICATIVE COST (1 low - 5 high)	2
INDICATIVE RISK & UNCERTAINTY (1 low - 5 high)	3		

Glenshellach

There are multiple areas in Glenshellach that have surcharged pipes or overland flooding. The west end of Glengallan Road has some businesses at risk of flooding. Around Glengallen Drive and McKelvie Road the network is surcharged, and the solution proposes routing flow into the burn and utilising two potential overland storage sites. The network in the area is separate so discharging the existing network to burns and overland storage is a possible solution. The zone also has steep sides which creates overland flow. This is the likely cause of flooding in Glenshellach Road and the properties in Balvicar Road & Fladdia Road.

Description				
The solution prop	osal focuses on	two areas in Glenshellach.	1	I
Solution	Location	Description	Benefit	Dimensions
1. Overland Conveyance	Glengallen Road	There is a space on the edge of the road. the overland conveyance discharges into the watercourse. The model shows there is overland flow in this area.	This is considered a low priority. It will reduce the risk of overland flow impacting local businesses.	Length= 50m Upstream Level= 22.9mAOD Downstream Level= 19.0mAOD
2. Pipe discharging to Burn	Glengallen Road	The network running parallel to the burn in this area is surcharged as shown in the plan. A small pipe discharging the excess flow into the burn to reduce surcharge in the upstream network.	It will reduce the surcharge in the network	Length= 16m
3. Attenuation Basin	Recreation field Glengallen Drive	There is an existing recreation field currently used as a football field. The level of the basin is currently approximately 9.2mAOD but this level could be reduced to increase storage at this site. The network would discharge to the field and return to the network through the same pipe.	The basin already partially exists but is not directly connected to the network. The basin can still be used as a football recreation field or can be developed for other compatible uses such as a playground.	Area= 1000m ² Approximate volume = 500m ³
4. Pipe	Glengallen Drive or Craighouse Ave	There are two options for discharging flow into the attenuation basin shown on the plan. Modelling is required to confirm which solution is appropriate and removes pluvial flooding in the area.	By discharging the network directly into the attenuation basin, the level in the network can be significantly reduced and controlled during the peak of a storm event.	Length= 42m
5. Pipe discharging to the culvert	Stacair Crescent	The surface water pipe in Stacair Crescent runs parallel to the Glenshellach Burn culvert. The surface water network is surcharged potentially causing a flood risk to the properties.	By discharging the surface water network into the culvert at this point reduces surcharge downstream, in turn reducing the risk of flooding.	Length= 7m
6. Pipe discharging to flood plain	McKelvie Road	The upstream network has a diameter of 225mm. A new pipe could directly discharge the flow into the flood plain. This will reduce surcharge in the downstream catchment and reduce fluvial flood. The flow from this network already discharges into the floodplain. By creating the shortcut to the floodplain the surcharge in the network will be reduced. There is a SuDS pond which has not been vested by Scottish Water nearby.	It will reduce the surcharge in the network by discharging to the floodplain further upstream the network.	Diameter= 150mm Length= 45m
7. Overland Storage	Watercourse Flood Plain	The burn flows through a wide floodplain. The flood plain provided a large potential storage if it could be properly formalised and managed.	Low benefit to pluvial flooding. This will provide a benefit to fluvial flooding.	Area= 74 000m ²
8. Overland Interception and Swale	Glenshellach Road	This zone is located in a valley. Flows travel overland down the steep slopes and into Glenshellach Road. This is causing flooding in the road. A swale located beside the road can intercept flows, attenuate them, and convey them safely to Lon Mor.	This solution will reduce flooding in Glenshellach Road.	Length= 500m
9. Overland Interception	Balvicar Road & Fladdia Road	Overland flow is discharging down the steep slopes and flooding the gardens of properties. Interception of this flow and conveying it either to the watercourse or the drainage network is required. There may be challenges with where to construct a solution as the land is privately owned. It is therefore proposed as a longer-term solution.	By intercepting flow it will reduce flooding in to the properties.	Length= 350m
KISK and Uncerta	inty			

• The solutions ultimately discharge into the Black Lynn, the levels in the watercourse need to be confirmed by a fluvial model before confirming their viability.

• The culvert located under Fladda Road has some uncertainty about how it is modelled. It currently discharges on the upstream side of Glengallen but is more likely to discharge into the burn downstream of Glengallan Road. Also, there is a surface water network pipe that discharges into the road, but this should be

linked into the culvert.				
Further Investigation and Next Steps				
The fluvial flood levels will influence the viability of these solutions and the design will need to consider predicted fluvial level.				
INDICATIVE IMPACT (1 low - 5 high)	3	INDICATIVE COST (1 low - 5 high)	2	
INDICATIVE RISK & UNCERTAINTY (1 low - 5 high)	2			

Argyll & Bute Council Oban Flood Study; Report 2C: Surface Water Management Plan

Lochavullin

Lochavullin has been flooded multiple times in recent history. Lochavullin is a low point in the catchment and is located on the bank of the Black Lynn. During major events there can be extensive fluvial and pluvial flooding, due to this interaction it is difficult to confirm the extent of the pluvial flooding.

The surface water network in the model has a free discharge into the Black Lynn but, during high water levels it is likely that the downstream end of the network would be drowned, and pluvial flooding would be unable to discharge. This would mean that the network will "store" flow. During extreme events the network would not have enough capacity, and there would be surface water flooding.

The network in this area is mostly separate, although there is a pipe connecting the surface water network and the foul network which discharges approximately 360m³ of surface water flow into the downstream combined sewer during a 1 in 5yr 600min event. The surface water network is also entirely within the zone, so there are no upstream areas which could retain surface water further up the catchment.

Description

First Stage

The priority is to improve the efficiency of the existing infrastructure. This will include improving the existing pump station, improving the discharge to the watercourse, and improving retention upstream in the catchment.

Solution	Location	Description	Benefit
Pump	Lochavullin PS	The pump station has had some maintenance issues. Improving	Improving the existing asset is a low cost solution to
Resilience		the maintenance schedule, upgrading the pump and protection of	reduce the risk of pluvial flow in Lochavullin.
		the control panel if required, and improving the pump	
		alert/activation system, will improve the functionality of the pump	
		station in alleviating flood risk.	
Non-return	Outfalls to the	Improved non-return valves will make sure there is no back flow	The provision of existing non-return valves is not
valves to the	Black Lynn	from the water course into the surface water network.	consistent and one of the main cast iron flap valves may
Black Lynn			not be working as intended due to corrosion.
SuDS storage	Lochavullin PS	Retrofitting overland/underground storage to retain more flow	Reduces the volume of flow in the network by storing
		upstream in the zone will reduce runoff volume entering the	over ground. This will reduce surcharge in the network
		drainage network. The suggested locations are open areas, which	and reduce the risk of pluvial flooding.
		can be easily retrofitted with over/under ground storage.	

Second Stage

The Hydraulic model does not include the existing Lochavullin PS. This means that surcharge and flooding in the area may be overpredicted. Scottish Water have committed to upgrading the model to include the Lochavullin PS. This would assist in sizing the future retro-fitting of SuDS measures if required in support of the pumping arrangement.

Due to the low level of this zone and the challenge of discharging to the Black Lynn when the river is in flood, provision of additional surface water storage will provide additional resilience to flood risk within this area. Runoff from buildings, car parks or within the surface water network and could be routed and stored in underground storage. There are three extensive car parking areas which provide a combined utilised area of approximately 18,000m². This space is currently used for the shops and businesses in the area. It is unlikely that this space could be sacrificed for above ground water storage, so underground storage should be considered. Underground storage does not provide additional amenity value to the community, however other solutions were considered but there is not enough space, or their effect would be low due to them being hydraulically isolated from the pluvial issues they have not been considered.

Three underground storage methods have been considered:

Solution	Description	Benefit	Risk
Cellular Storage	There is a wide area available for a	Does not require deep excavations.	Requires a large area.
	large volume of cellular storage.		May require a pump to discharge the
			flow to the Black Lynn.
Online attenuation	Online attenuation requires an upsize	Will drain under and gravity and won't require a	Some parts of the network only have
	of the existing network. This is unlikely	pump.	ground cover of 0.9m, a significant
	to be a viable solution due to the low		upsize won't be possible in this area.
Offline	Requires a small area	Easy to drain the network from a problem area away	Will require a deep excavation.
Attenuation	This solution would require a pump to	to a tank, potentially located some distance away.	Will require a pump to return flow to the
	return the flow to the network	One tank could drain flow from both longsections in	Black Lynn
		the network.	

In addition to the storage tanks other features may be required:

Solution	Location	Description	Benefit	Dimensions			
Pipe	See Plan	Pipe can be located to drain the network at pinch points. These lengths may be	Hydraulically the best	Approximate Length=			
		quite long to route the flow from the pinch point to the car park which has been	solution drains the flow	200m – 400m			
		agreed for storage.	at the pinch point.				
Remove	Crannog	Installing the storage may be a good opportunity to take account for the surface	Potentially an easy				
Pipe	Lane	water flow discharging to the foul network. This will reduce pressure on the	additional win as part of				
		downstream combined network. This may require additional storage to deal with	a wider solution.				
		the increased flow in the surface water network.					

Risk and Uncertainty

• There are uncertainties in the accuracy of the hydraulic model of the surface water drainage network of the area. The two main areas of uncertainty are the

- absence of the Council pumping station and assumption of a free draining discharge. These will be addressed in the model update provided by Scottish Water.
- There is interaction between pluvial and fluvial flooding in this area and the proposed measures aim to remove this by dealing with the know areas of connection. The presence of any older connections not identified may require to be addressed should they be detected at a later date.
- The proposed fluvial flood risk management measures in this area detailed in the main Oban Flood Study report include measures to reduce the frequency of fluvial overtopping into this zone, and provision of non-return valves to prevent reverse flows into this zone.
- The effective operation of the existing pump station with resilience measures in place, should also consider the effects of temporary reductions in pump capacity or downtime on projected flood extents.

Further Investigation and Next Steps

It is recommended that the updated hydraulic model is used to investigate the above options and identify the most effective solution or combination of solutions. Hydraulically there are multiple variables, so the final option may require multiple additional features to optimise its effectiveness.

This work will be potentially expensive and disruptive to the businesses but will provide flood relief so there should be community and business support. It can be progressed with a progressive and retro-fitting approach as an integral component of re-developments within this zone.

INDICATIVE IMPACT (1 low - 5 high)	4	INDICATIVE COST (1 low - 5 high)	4
INDICATIVE RISK & UNCERTAINTY (1 low - 5 high)	2		

